Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice

The image shows a single human cell (brown) on a bed of nanoneedles (blue). This image was taken by the researchers using electron microscopy.
CREDIT: Imperial College London
The image shows a single human cell (brown) on a bed of nanoneedles (blue). This image was taken by the researchers using electron microscopy.

CREDIT: Imperial College London

Abstract:
The researchers, from Imperial College London and Houston Methodist Research Institute in the USA, hope their nanoneedle technique could ultimately help damaged organs and nerves to repair themselves and help transplanted organs to thrive.

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice

London, UK | Posted on March 31st, 2015

The nanoneedles work by delivering nucleic acids to a specific area. Nucleic acids are the building blocks of all living organisms and they encode, transmit and express genetic information. Scientists are currently investigating ways of using nucleic acids to re-program cells to carry out different functions.

The nanoneedles are tiny porous structures that act as a sponge to load significantly more nucleic acids than solid structures. This makes them more effective at delivering their payload. They can penetrate the cell, bypassing its outer membrane, to deliver nucleic acids without harming or killing the cell. The nanoneedles are made from biodegradable silicon, meaning that they can be left in the body without leaving a toxic residue behind. The silicon degrades in about two days, leaving behind only a negligible amount of a harmless substance called orthosilicic acid.

In a trial described in Nature Materials, the team showed they could deliver the nucleic acids DNA and siRNA into human cells in the lab, using the nanoneedles. They also showed they could deliver nucleic acids into the back muscles in mice. After seven days there was a six-fold increase in the formation of new blood vessels in the mouse back muscles, and blood vessels continued to form over a 14 day period. The technique did not cause inflammation or other harmful side effects.

The hope is that one day scientists will be able to help promote the generation of new blood vessels in people, using nanoneedles, to provide transplanted organs or future artificial organ implants with the necessary connections to the rest of the body, so that they can function properly with a minimal chance of being rejected.

"This is a quantum leap compared to existing technologies for the delivery of genetic material to cells and tissues," said Ennio Tasciotti, Co-Chair, Department of Nanomedicine at Houston Methodist Research Institute and co-corresponding author of the paper. "By gaining direct access to the cytoplasm of the cell we have achieved genetic reprogramming at an incredible high efficiency. This will let us personalize treatments for each patient, giving us endless possibilities in sensing, diagnosis and therapy. And all of this thanks to tiny structures that are up to 1,000 times smaller than a human hair."

Professor Molly Stevens, co-corresponding author from the Departments of Materials and of Bioengineering at Imperial College London, said: "It is still very early days in our research, but we are pleased that the nanoneedles have been successful in this trial in mice. There are a number of hurdles to overcome and we haven't yet trialled the nanoneedles in humans, but we think they have enormous potential for helping the body to repair itself."

The researchers are now aiming to develop a material like a flexible bandage that can incorporate the nanoneedles. The idea is that this would be applied to different parts of the body, internally or externally, to deliver the nucleic acids necessary to repair and reset the cell programming.

Dr Ciro Chiappini, first author of the study from the Department of Materials, added: "If we can harness the power of nucleic acids and prompt them to carry out specific tasks, it will give us a way to regenerate lost function. Perhaps in the future it may be possible for doctors to apply flexible bandages to severely burnt skin to reprogram the cells to heal that injury with functional tissue instead of forming a scar. Alternatively, we may see surgeons first applying the nanoneedle bandages inside the affected region to promote the healthy integration of these new organs and implants in the body. We are a long way off, but our initial trials seem very promising."

"Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization", published March 30 2015, in Nature Materials journal.

C. Chiappini [1],[2], E. De Rosa [3], J. O. Martinez [3], X. Liu3, J. Steele [1],[2], M. M. Stevens [1], [2] and E. Tasciotti [3] [1] Department of Materials, Imperial College London, London, SW6 7PB, UK.

[2] Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA.

[3] Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW6 7PB, UK.

####

About University College London
Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

About Houston Methodist Research Institute

Houston Methodist Hospital, the system's flagship, is listed among U.S. News & World Report's best hospitals and is ranked as the best hospital in Texas. FORTUNE magazine has placed Houston Methodist on its annual list of "100 Best Companies To Work For" since 2006. It is the only health care organization in Texas on the list.

Houston Methodist Research Institute was formed in 2004 to rapidly and efficiently translate discoveries made in the laboratory and the clinic into new diagnostics, therapies and treatments. Important advances in biomedical sciences and health care are made by collaborative, interdisciplinary teams of individuals with diverse scientific backgrounds and training. TMHRI was created to provide the infrastructure and support for these endeavours, and to house the technology and resources needed to make innovative breakthroughs in important areas of human disease. A new 440,000-square-foot facility, was opened in 2010 to house scientists engaged in cutting edge research in Nanomedicine, Cardiovascular sciences, Cancer, Neurosciences, Regenerative Medicine, Infectious disease, and more.
www.hmleadingmedicine.com

For more information, please click here

Contacts:
Colin Smith
Senior Research Media Officer
Communications and Public Affairs
Imperial College London
South Kensington Campus
London SW7 2AZ
Tel: +44 (0)20 7594 6712

Duty press officer mobile: +44 (0)7803 886248

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Nanomedicine

Developing nanoprobes to detect neurotransmitters in the brain: Researchers synthesize fluorescent molecularly imprinted polymer nanoparticles to sense small neurotransmitter molecules and understand how they govern brain activity March 3rd, 2023

Stanford researchers develop a new way to identify bacteria in fluids: An innovative adaptation of the technology in an old inkjet printer plus AI-assisted imaging leads to a faster, cheaper way to spot bacteria in blood, wastewater, and more March 3rd, 2023

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Discoveries

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Graphene grows and we can see it March 24th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Announcements

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Research partnerships

Destroying the superconductivity in a kagome metal: Electronic control of quantum transitions in candidate material for future low-energy electronics March 3rd, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project