Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells

This image shows a synthesis of epitaxial crystals (about 100 nm long) of Bi2Pt2O7 pyrochlore. A pulsed laser deposition step is followed by a post-growth anneal in air.
CREDIT: A. Gutiérrez-Llorente/Cornell University
This image shows a synthesis of epitaxial crystals (about 100 nm long) of Bi2Pt2O7 pyrochlore. A pulsed laser deposition step is followed by a post-growth anneal in air.

CREDIT: A. Gutiérrez-Llorente/Cornell University

Abstract:
Researchers from Cornell University have synthesized a new thin-film catalyst for use in fuel cells. In a paper published March 10 in the journal APL Materials, from AIP Publishing, the team reports the first-ever epitaxial thin-film growth of Bi2Pt2O7 pyrochlore, which could act as a more effective cathode -- a fundamental electrode component of fuel cells from which positive current flows through an external circuit delivering electric power.

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells

Washington, DC | Posted on March 10th, 2015

"Up to now, research on oxygen catalysts in thin film form for clean-energy applications has been focused on the perovskite-structured oxides and their structural derivatives," said lead researcher Araceli Gutierrez-Llorente. "The much less studied cubic pyrochlore structure is an appealing alternative to perovskites for such applications as fuel cell cathodes."

The pyrochlore in question -- Bi2Pt2O7 -- has previously been successfully synthesized as a nanocrystalline powder. Epitaxial thin films can actually act as more efficient fuel cell catalysts than nanocrystalline powder, but growing Bi2Pt2O7 directly as a film requires oxidizing the platinum metal -- a challenging step.

The team used pulsed laser deposition to co-deposit epitaxial δ-Bi2O3 and disordered platinum. Annealing the film in air forced the platinum to oxidize and encouraged the formation of epitaxial Bi2Pt2O7 crystals about 100 nanometers in length.

"Our results provide the only currently-known method to form epitaxial Bi2Pt2O7, thought to be one of the most promising oxide catalysts for fuel cell applications," said Gutierrez-Llorente. The cathode of a solid oxide fuel cell electrochemically reduces oxygen. Bi2PtO7's oxygen-deficient structure makes it an ideal catalyst for the process.

Synthesizing the material as a thin film instead of as a bulk powder opens up new possibilities for fuel cell technology. "A huge range of surprising properties that cannot be attained in the bulk form can be generated at the interface between complex oxides in thin film form," said Gutierrez-Llorente.

####

About American Institute of Physics
APL Materials is a new open access journal featuring original research on significant topical issues within the field of functional materials science.

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Epitaxial crystals of Bi2Pt2O7 pyrochlore through the transformation of δ-Bi2O3 fluorite," is authored by Araceli Gutierrez-Llorente, Howie Joress, Arthur Woll, Megan E. Holtz, Matthew J. Ward, Matthew C. Sullivan, David A. Muller and Joel D. Brock. It will be published in APL Materials on March 10, 2015 (DOI: 10.1063/1.4908103). After that date, it can be accessed at:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Thin films

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project