Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices

Shown are four examples of the double-vortex states investigated with opposite vorticity. In each disk, the flat yellow arrows represent the sense of the circulation of the in-plane magnetization component. The red and green arrows indicate the polarity of the vortex core. The tiny core, with a diameter of only a few nanometers, is surprisingly important for the magnetization dynamics when a current flows through the double-vortex pillars.
CREDIT: HZDR/FZJ
Shown are four examples of the double-vortex states investigated with opposite vorticity. In each disk, the flat yellow arrows represent the sense of the circulation of the in-plane magnetization component. The red and green arrows indicate the polarity of the vortex core. The tiny core, with a diameter of only a few nanometers, is surprisingly important for the magnetization dynamics when a current flows through the double-vortex pillars.

CREDIT: HZDR/FZJ

Abstract:
Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Forschungszentrum Jülich (FZJ) together with a colleague at the French Centre National de la Recherche Scientifique (CNRS) in Strasbourg have found a new way to electrically read out the orientation of magnetic vortices in nanodisks. Their method relies on measuring characteristic microwaves emanating from the vortices. The new knowledge about these signals could be used in the construction of extremely small components for novel memory technology or wireless data transmission. The results of the study appear in the current edition of the scientific journal Nature Communications (DOI: 10.1038/ncomms7409).

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices

Dresden, Germany | Posted on March 4th, 2015

The internal spin configuration of magnetic nanodisks has been at the center of scientific attention for several years. "Spin" refers to the rotational momentum of charged particles that enables, among other things, iron to be magnetized, for example. The ferromagnetism of iron arises from the parallel alignment of the spins of all the electrons. However, in very thin and small disks of ferromagnetic material, the nanodisks, spins are also known to form magnetic vortices. Since researchers discovered these complex structures, they have been trying to use their properties to facilitate extremely compact and energy-efficient data storage. These nanodisk devices could, for instance, be employed in future smart phones or laptops, if the stored information can be read out successfully.

In nanodisks, the spins - and thus the magnetic moment of the electrons - are arranged as if ordinary bar magnets were lined up in a circle. However, at the core of the disk, this order does not work anymore, and instead the small magnets align themselves out of the plane of the disk, either in an upward or downward direction. "With these two properties, the sense of circulation of the in-plane magnetization and the magnetic orientation of the core, information can be stored", says Dr. Attila Kákay, a former researcher of Forschungszentrum Jülich who recently moved to Dresden. "This means that we can store as much as two bits of information using a single vortex. Two vortices stacked on top of each other can already store four memory bits corresponding to 16 different states."

Core of Nanodisks Too Small to Be Read Out Conventionally

This type of magnetic nanopillar with two stacked vortices is just 50 nanometers in height and has a diameter of 150 nanometers - almost a thousand times thinner than a human hair. But while the circulation of the vortex and the magnetic orientation of the core can be quite easily affected by currents and magnetic fields, the small size of the nanodisks was previously an obstacle to reading out the information. "The magnetic orientation in the core, the so-called polarity, could not be read reliably because the core was simply too tiny", says Dr. Kákay. However, during the course of experiments in Jülich, the researchers found a solution: microwaves. These electrical alternating voltage signals are emitted by the stacked vortices when connected to a direct current. The characteristic frequencies of the microwaves are now used by the physicists to determine the core polarity and sense of circulation of the vortices.

"This principle is similar to that of playing a wooden flute: here too, each position of the fingers over the holes clearly corresponds to a particular musical note, a vibration frequency," explains Dr. Alina Deac, head of the Helmholtz Young Investigator Group for spintronics at the HZDR.

With this new method, the scientists from Dresden, Jülich and Strasbourg have been able to design new nanoscale components that are not only capable of storing information within magnetic vortices, but also enable it to be reliably read out electrically. Using this principle, in the future far more data could be stored in ever smaller memory chips that could have many applications in modern electrical engineering. In addition, the frequency of the AC voltage can even reach the gigahertz range, which makes ultra-fast wireless transfer of information possible, for example, for use in mobile communications and wireless network services.

###

Publication: V. Sluka [1,4], A. Kákay [1], A. M. Deac[1], D. E. Bürgler[2], C. M. Schneider[2], R. Hertel[3]: „Spin-torque-induced dynamics at fine-split frequencies in nano-oscillators with two stacked vortices", in Nature Communications, in press, DOI: 10.1038/ncomms7409

[1] - Helmholtz-Zentrum Dresden-Rossendorf, former researcher at the Forschungszentrum Jülich
[2] - Forschungszentrum Jülich
[3] - Centre National de la Recherche Scientifique in Strasbourg, France; former researcher at the Forschungszentrum Jülich
[4] - Now Postdoc at New York University

####

About Helmholtz-Zentrum Dresden-Rossendorf
The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) conducts research in the sectors energy, health, and matter. It focuses its research on the following topics:

How can energy and resources be used efficiently, safely, and sustainably?
How can malignant tumors be visualized and characterized more precisely and treated effectively?
How do matter and materials behave in strong fields and in the smallest dimensions?
To answer these scientific questions, several large-scale research facilities provide unique research opportunities. These facilities are also accessible to external users.

The HZDR has been a member of the Helmholtz Association, Germany's largest research organization, since 2011. It has four locations in Dresden, Leipzig, Freiberg, and Grenoble and employs about 1,000 people - approximately 500 of whom are scientists, including 150 doctoral candidates.

For more information, please click here

Contacts:
Christine Bohnet

49-351-260-2450
Mobile: +49 160 969 288 56

Tobias Schlößer
Press Officer
Phone: +49 2461 61-4771

Forschungszentrum Jülich
http://www.fz-juelich.de

Further information:
Dr. Attila Kákay
Institute of Ion Beam Physics and Materials Research
HZDR
Phone: +49 351 260-2689


Dr. Daniel E. Bürgler
Peter Grünberg Institute (PGI-6) at FZJ
Phone: +49 2461 61-4214

Copyright © Helmholtz-Zentrum Dresden-Rossendorf

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Memory Technology

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project