Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bar-Ilan U. researcher first to observe 'god particle' analogue in superconductors: Introduces 'tabletop' technique for examining the standard model of physics' most celebrated missing link

Abstract:
The Nobel Prize-winning discovery of the Higgs boson - the "God particle" believed responsible for all the mass in the universe - took place in 2012 at CERN's Large Hadron Collider, an underground facility where accelerated sub-atomic particles zip around the circumference of a 27-kilometer (16.9-mile) ring-shaped tunnel. But what goes around comes around: more than 50 years ago, the first hint of Higgs was inspired by the study of superconductors - a special class of metals that, when cooled to very low temperatures, allow electrons to move without resistance.

Bar-Ilan U. researcher first to observe 'god particle' analogue in superconductors: Introduces 'tabletop' technique for examining the standard model of physics' most celebrated missing link

Ramat-Gan, Israel | Posted on February 19th, 2015

Now, a research team led by Israeli and German physicists has closed a circle, by reporting the first-ever observations of the Higgs mode in superconducting materials.

Unlike the mega-expensive sub-atomic smashups at CERN - a facility that cost about $4.75 billion to build - these findings, presented in the prestigious scientific journal Nature Physics, were achieved through experiments conducted in a regular laboratory at relatively low cost.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space. "Just as the CERN experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors," says Prof. Aviad Frydman, a member of Bar-Ilan University's Department of Physics, who directed the study together with Prof. Martin Dressel, of Stuttgart University, as part of an international collaboration that also included other research teams from Israel, India and the United States. Doctoral student Daniel Sherman, a member of Frydman's Bar-Ilan laboratory, conducted much of the investigation and is listed as the publication's first author.

Frydman explains that the new discovery brings the search for the Higgs boson back to its source. "Ironically, while the discussion about this 'missing link' in the Standard Model was inspired by superconductor theory, the Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome."

In their Nature Physics publication, Frydman and his colleagues describe a new method for conducting Higgs physics experiments. "The high energy required to excite a Higgs mode in superconductors tends to break apart the electron pairs serving as this type of material's basic charge. This causes rapid decay into particle-hole pairs, and suppresses the material's superconducting nature," Frydman says. "We solved this problem by using disordered and ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) near the superconductor-insulator critical point - a state in which recent theory predicted the rapid decay of the Higgs would no longer occur. This created the conditions to excite a Higgs mode at relatively low energies."

According to Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under drastically different energy conditions. "Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV," Frydman says. "The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt. What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work."

Moreover, the robust nature of the newly-observed Higgs mode in superconductors could make it easier for scientists to study the still-controversial "God particle" - the elusive "missing link" in the Standard Theory of particle physics believed responsible for imparting mass to all the matter in the universe. Thanks to this new approach, it may soon be possible to solve long-standing mysteries of fundamental physics, through experiments conducted - not in a multi-billion dollar accelerator complex - but on a laboratory tabletop.

###

The research was funded by a grant from the German Israel Foundation.

Prof. Aviad Frydman, a member of the Bar-Ilan University Department of Physics who also holds an appointment at the University's Institute for Nanotechnology and Advanced Materials (BINA), is an expert on mesoscopic physics - an area concerned with the fundamental physical problems that occur when a macroscopic object is miniaturized. Specifically, Prof. Frydman is exploring low-dimensional magnetism and superconductivity, subjects that are of interest to researchers because they hold the key to actualizing the potential of nanotechnology for the manufacture of super-miniaturized electronic devices.

####

For more information, please click here

Contacts:
Elana Oberlander

972-353-17395

Copyright © Bar-Ilan University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Superconductivity

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Iron secrets behind superconductors unlocked July 7th, 2017

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Joseph N. Pelton named 2017 Lifeboat Foundation Guardian Award Winner February 1st, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project