Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way

Abstract:
Creating entangled photons is part of the work quantum computing researchers perform in their labs. But for the past 30 years, scientists have been slowed down and frustrated by the large, often finicky machines they've had to use to generate them.

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way

Waterloo, Canada | Posted on February 16th, 2015

Now, a University of Waterloo researcher has invented a device - so small it fits into your hand - that can do the job. And far from being a fussy, difficult machine to operate, the Waterloo device can be tossed around the room - and still work.

A simpler, more efficient way to produce photons

Rolf Horn, a postdoctoral fellow at Waterloo's Institute for Quantum Computing (IQC), invented the device that will be brought to market soon so scientists around the world can use it in their labs. This new device advances quantum research by providing a simpler, more efficient way of producing entangled photons.

"This device is inspirational because it will accelerate quantum inventions and commercialization at IQC and around the world," says Raymond Laflamme, executive director at IQC and mentor to Horn. "We're at the beginning of an era, for IQC and society as a whole, as we start to see the germination of quantum innovations that are ripe for commercialization. We're very proud that all of the work to develop this device was done at IQC."

Waterloo device will save months of time

Thomas Jennewein, an associate professor at IQC who contributed his expertise on entangled photons to the development of the device, said there are hundreds of quantum research groups that could benefit from the invention. "Rolf's pre-aligned, robust, and significantly smaller device fixes a huge flaw in the process of producing entangled photons for quantum research, which will save months of time and work," says Jennewein.

The photons produced by the device are also extremely fragile which, in quantum terms, makes them very secure. If someone attempts to measure one photon, the pair of photons becomes uncorrelated and the user can tell there has been interference. This is a considerable improvement to current information security where keys used to protect data, such as passwords, are becoming easier to crack and users don't know their information is being looked at until it's too late.

Device could improve quantum information security

"Nothing is 100 per cent secure but this invention could improve security dramatically from anything that's available today," says Horn. "Pictures and other data could be encrypted with keys created by this quantum source. You would then be notified if someone tried to look at these keys, and you could stop sending sensitive information immediately."

Assisted by the Waterloo Commercialization Office (WatCo), Horn and his team received a Natural Sciences and Engineering Research Council of Canada (NSERC) Idea to Innovation Grant allowing the team to work with industry partners to build the hardware, optimize the device's system, and prepare the invention for commercialization.

####

For more information, please click here

Contacts:
200 University Avenue West
Waterloo, ON, Canada N2L 3G1
+1 519 888 4567

Copyright © University of Waterloo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Videos/Movies

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

A bullet-proof heating pad November 2nd, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Quantum Computing

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Computing faster with quasi-particles May 10th, 2019

Coincidence helps with quantum measurements: New method enables quantum simulations on larger systems April 22nd, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project