Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena

A "Fermi surface" is kind of three-dimensional map representing the collective energy states of electrons in a material. These computer-generated illustrations show how the Fermi surface for CeRhIn5 changes, depending upon whether the electrons are strongly interacting (left) or weakly interacting (right).
CREDIT: Q. Si/Rice University and J.X. Zhu/Los Alamos National Laboratory
A "Fermi surface" is kind of three-dimensional map representing the collective energy states of electrons in a material. These computer-generated illustrations show how the Fermi surface for CeRhIn5 changes, depending upon whether the electrons are strongly interacting (left) or weakly interacting (right).

CREDIT: Q. Si/Rice University and J.X. Zhu/Los Alamos National Laboratory

Abstract:
A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting a theory that strange electronic behaviors -- including high-temperature superconductivity and heavy fermion physics -- arise from quantum fluctuations of strongly correlated electrons.

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena

Houston, TX | Posted on January 30th, 2015

The study, which appeared in the Jan. 20 issue of Proceedings of the National Academy of Sciences, describes results from a series of experiments on a layered composite of cerium, rhodium and indium. The experiments tested, for the first time, a prediction from a theory about the origins of quantum criticality that was published by Rice physicist Qimiao Si and colleagues in 2001.

"Our theory was a surprise at the time because it broke with the textbook framework and suggested that a broad range of phenomena -- including high-temperature superconductivity -- can only be explained in terms of the collective behavior of strongly correlated electrons rather than by the more familiar theory based on essentially decoupled electrons," said Si, a co-corresponding author on the new study and Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy.

Experimental evidence in support of the theory has mounted over the past decade, and the PNAS study fills yet another gap. In the experiments, researchers probed high-quality samples of a heavy-fermion material known as CeRhIn5.

Heavy fermion materials like CeRhIn5 are prototype systems for quantum criticality. In these materials, electrons tend to act in unison, and even one electron moving through the system causes widespread effects. This "correlated electron" behavior is very different from the electron interactions in a common metal like copper, and physicists have become increasingly convinced that correlated electron behavior plays an important role in phenomena like superconductivity and quantum criticality.

Quantum critical points, near which these strange correlated effects are particularly pronounced, mark a smooth phase change, or transition from one state of matter to another. Just as the melting of ice involves a transition from a solid to a liquid state, the electronic state of quantum materials changes when the material is cooled to a quantum critical point.

The critical temperature of a material can be raised or lowered if the material is chemically altered, placed under high pressure or put into a strong magnet. In the new experiments, which were carried out using the high magnetic field facilities at Los Alamos National Laboratory in New Mexico and at Florida State University, researchers observed a magnetically induced quantum critical point at ambient pressure and compared it to the previously studied case of a pressure-induced quantum critical point.

The nature of the quantum critical point was probed by something called the "Fermi surface," a sort of three-dimensional map that represents the collective energy states of all electrons in the material. When physicists have previously attempted to describe quantum phase transitions using traditional theories, equations dictate that the Fermi surface must change smoothly and gradually as the material passes through the critical point. In that case, most of the electrons on the Fermi surface are still weakly coupled to each other.

In contrast, Si's theory predicts that the Fermi surface undergoes a radical and instantaneous shift at the critical point. The electrons on the entire Fermi surface become strongly coupled, thereby giving rise to the strange-metal properties that allow unusual electronic states, including superconductivity.

"We observed exactly the sort of a sharp Fermi surface reconstruction predicted by theory of unconventional quantum criticality," said study co-author Frank Steglich, director of the Max Planck Institute for Chemical Physics of Solids in Dresden, Germany, and also of the Center for Correlated Matter at Zhejiang University in Hangzhou, China.

Zhejiang physicist Huiqiu Yuan, co-corresponding author on the study, said, "Our experiments demonstrate that direct measurements of a Fermi surface can distinguish theoretically proposed models of quantum criticality and point to a universal description of quantum phase transitions."

Heavy-fermion metals and high-temperature superconductors are examples of quantum matter, and the new research is an example of the pathbreaking, collaborative research that Rice hopes to foster with the new Rice Center for Quantum Materials.

Si, who also directs the new center, said, "Our study exemplifies the kind of progress in quantum materials that can be made through collaborations among theory, materials synthesis and spectroscopic measurements. At the Rice Center for Quantum Materials, we seek to foster this type of synergy, both internally at Rice University and through collaborations with our domestic and international partner institutions."

The research was supported by the National Science Foundation, the Department of Energy, the National Basic Research Program of China, the National Science Foundation of China, the German Research Foundation, the Zhejiang Provincial Natural Science Foundation, the State of Florida and the Robert A. Welch Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations on Twitter @RiceUNews.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778


Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the PNAS paper is available at:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Quantum nanoscience

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project