Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Self-destructive Effects of Magnetically-doped Ferromagnetic Topological Insulators: Magnetic atoms that create exotic surface property also sow the seeds of its destruction

Sťamus Davis
Sťamus Davis

Abstract:
The discovery of "topologically protected" electrical conductivity on the surface of some materials whose bulk interior acts as an insulator was among the most sensational advances in the last decade of condensed matter physics-with predictions of numerous unusual electronic states and new potential applications. But many of these predicted phenomena have yet to be observed. Now, a new atomic-scale study of the surface properties of one of these ferromagnetic topological insulators reveals that these materials may not be what they had seemed.

Self-destructive Effects of Magnetically-doped Ferromagnetic Topological Insulators: Magnetic atoms that create exotic surface property also sow the seeds of its destruction

Upton, NY | Posted on January 19th, 2015

The research-conducted at the U.S. Department of Energy's Brookhaven National Laboratory and published in the Early Edition of the Proceedings of the National Academy of Sciences-revealed extreme disorder in a fundamental property of the surface electrons known as the "Dirac mass." Like the mass imparted to fundamental particles by their interactions with the recently confirmed Higgs field, Dirac mass results from surface particles' interactions with magnetic fields. These fields are created by the presence of magnetic atoms substituted into the material's crystal lattice to convert it into a ferromagnetic topological insulator.

"What we have discovered is that the Dirac mass is extremely disordered at the nanoscale, which was completely unanticipated," said J.C. Sťamus Davis, a senior physicist at Brookhaven Lab and a professor at Cornell University and St. Andrew's University in Scotland, who led the research. "The analogous situation in elementary particles would be if the Higgs field was random throughout space so that the electron mass (and the mass of a car or a person) was randomly different at every location. It would be an extremely chaotic universe!"

In the ferromagnetic topological insulators, Davis said, the chaos eventually destroys the exotic surface state.

"Our findings explain why many of the electronic phenomena expected to be present in ferromagnetic topological insulators are in fact suppressed by the very atoms that generate this state, and offer insight into the true atomic-scale mechanism by which the observed properties arise," Davis said. "This new understanding will likely result in revisions of the basic research directions in this field."

Precision studies

Under Davis' guidance, Brookhaven Lab postdoctoral fellows Inhee Lee and Chung Koo Kim studied nearly perfect ferromagnetic topological insulator crystals grown by Brookhaven physicist Genda Gu. They used a spectroscopic imaging, scanning tunneling microscope (SI-STM) designed and built by Davis at Brookhaven to scan the surface of these crystals atom-by-atom. This tool has the precision to simultaneously reveal the positions of the magnetic dopant atoms and the resulting Dirac mass.

Prior to this work, scientists had assumed that these magnetic dopant atoms were not detrimental to the topological surface states. But no one had directly studied how the spatial arrangements of the magnetic dopant atoms at the atomic scale influenced the Dirac-mass because there were no reliable techniques to do so, until now.

The new atom-by-atom SI-STM data revealed not only the intense nanoscale disorder in the Dirac mass, but also showed that this disorder is directly related to fluctuations in the density of the magnetic dopant atoms on different parts of the crystal surface. In the paper, the scientists also provide the first direct evidence for the actual mechanism of how surface ferromagnetism arises in a topological insulator, and determine directly the strength of the surface-state magnetic-dopant interactions.

"The Dirac-mass 'gapmap' technique introduced here reveals radically new perspectives on the physics of ferromagnetic topological insulators," Davis said.

"The key realization from these discoveries-aside from a clear and direct picture of what is going on at the atomic scale-is that, in ferromagnetic topological insulators dominated by this magnetic-dopant atom phenomena, many of the exotic and potentially valuable phenomena expected for these materials are actually being quantum mechanically short circuited by the random variations of Dirac mass," he said.

Of course, there may still be a way to achieve all the exotic physics expected of ferromagnetic topological insulators-if scientists can develop ways to control the dopant-induced Dirac-mass gap disorder. Hence the idea of a whole new research direction for this field.

This research was funded by the DOE Office of Science.

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at www.bnl.gov/newsroom, follow Brookhaven Lab on Twitter, twitter.com/BrookhavenLab, or find us on Facebook, www.facebook.com/BrookhavenLab/.

For more information, please click here

Contacts:
Karen McNulty Walsh
631-344-8350


Peter Genzer
631-344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: "Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3"

Related News Press

Physics

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

In a quantum future, which starship destroys the other? Quantum physicists blur the lines of cause and effect, illustrating how a sequence of events can flip and co-exist at the same time August 23rd, 2019

Studying quantum phenomena in magnetic systems to understand exotic states of matter August 21st, 2019

News and information

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Laboratories

Scientists couple magnetization to superconductivity for quantum discoveries September 6th, 2019

Rice reactor turns greenhouse gas into pure liquid fuel: Lab's 'green' invention reduces carbon dioxide into valuable fuels September 3rd, 2019

Govt.-Legislation/Regulation/Funding/Policy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nationís first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Discoveries

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Materials/Metamaterials

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nationís first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Scientists create a nanomaterial that is both twisted and untwisted at the same time: The material developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist September 13th, 2019

MIT engineers develop 'blackest black' material to date: Made from carbon nanotubes, the new coating is 10 times darker than other very black materials September 13th, 2019

Announcements

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project