Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Getting into your head: Gelatin nanoparticles could deliver drugs to the brain

Photo by L. Brian Stauffer
Illinois professor Kyekyoon “Kevin” Kim, graduate student Elizabeth Joachim and research scientist Hyungsoo Choi developed tiny gelatin nanoparticles that can carry medication to the brain, which could lead to longer treatment windows for stroke patients.
Photo by L. Brian Stauffer

Illinois professor Kyekyoon “Kevin” Kim, graduate student Elizabeth Joachim and research scientist Hyungsoo Choi developed tiny gelatin nanoparticles that can carry medication to the brain, which could lead to longer treatment windows for stroke patients.

Abstract:
Stroke victims could have more time to seek treatment that could reduce harmful effects on the brain, thanks to tiny blobs of gelatin that could deliver the medication to the brain noninvasively.

Getting into your head: Gelatin nanoparticles could deliver drugs to the brain

Champaign, IL | Posted on December 23rd, 2014

University of Illinois researchers and colleagues in South Korea, led by U. of I. electrical and computer engineering senior research scientist Hyungsoo Choi and professor Kyekyoon "Kevin" Kim, published details about the gelatin nanoparticles in the journal Drug Delivery and Translational Research.

The researchers found that gelatin nanoparticles could be laced with medications for delivery to the brain, and that they could extend the treatment window for when a drug could be effective. Gelatin is biocompatible, biodegradable, and classified as "Generally Recognized as Safe" by the Food and Drug Administration. Once administered, the gelatin nanoparticles target damaged brain tissue thanks to an abundance of gelatin-munching enzymes produced in injured regions.

The tiny gelatin particles have a huge benefit: They can be administered nasally, a noninvasive and direct route to the brain. This allows the drug to bypass the blood-brain barrier, a biological fence that prevents the vast majority of drugs from entering the brain through the bloodstream.

"Overcoming the difficulty of delivering therapeutic agents to specific regions of the brain presents a major challenge to treatment of most neurological disorders," said Choi. "However, if drug substances can be transferred along the olfactory nerve cells, they can bypass the blood-brain barrier and enter the brain directly."

To test gelatin nanoparticles as a drug-delivery system, the researchers used the drug osteopontin (OPN), which in rats can help to reduce inflammation and prevent brain cell death if administered immediately after a stroke.

"It is crucial to treat ischemic strokes within three hours to improve the chances of recovery. However, a significant number of stroke victims don't get to the hospital in time for the treatment," Kim said.

By lacing gelatin nanoparticles with OPN, the researchers found that they could extend the treatment window in rats, so much so that treating a rat with nanoparticles six hours after a stroke showed the same efficacy rate as giving them OPN alone after one hour - 70 percent recovery of dead volume in the brain.

The researchers hope the gelatin nanoparticles, administered through the nasal cavity, can help deliver other drugs to more effectively treat a variety of brain injuries and neurological diseases.

"Gelatin nanoparticles are a delivery vehicle that could be used to deliver many therapeutics to the brain," Choi said. "They will be most effective in delivering drugs that cannot cross the blood-brain barrier. In addition, they can be used for drugs of high toxicity or a short half-life."

Both Choi and Kim are members of the Micro and Nano Technology Laboratory at the U. of I. Kim is also affiliated with the Neuroscience Program, the Institute for Genomic Biology, the Beckman Institute and the departments of bioengineering, of materials science and engineering, and of nuclear, plasma and radiological engineering at the U. of I.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Hyungsoo Choi
217-244-6345


Kevin Kim
217-333-7162

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model,” is available online:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project