Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fraud-proof credit card possible because of quantum physics

Abstract:
Cards, such as identification cards and credit cards, which are impossible to hack. With a system based on quantum physics this will soon be possible. Researchers from the UT research institute MESA+ and the Eindhoven University of Technology (TU/e) have together developed a method with which you can authenticate physical objects which are impossible to copy. The research has been published today in The Optical Society's (OSA) new high-impact journal Optica (and is shown on the cover).

Fraud-proof credit card possible because of quantum physics

Enschede, Netherlands | Posted on December 16th, 2014

Technologists are fighting a continuous battle with people with malicious intent to secure bank cards, credit cards, identification cards and locks of, for example, cars. In bank cards the magnetic stripes have been replaced with a chip with a small microprocessor and a secret code, but the chip can still be copied and hackers have recently managed to discover the accompanying code. Car thieves are currently also already able to steal cars by turning the digital door lock to suit their purpose. To achieve this they don't use a copy of the key but are, armed with just a laptop, able to imitate the 'question-answer' game that the lock plays with the key.

Researchers of the University of Twente have together with the Eindhoven University of Technology developed a method which makes it impossible to hack cards or imitate their properties, even if those with malicious intent have all the necessary information at their disposal, such as the complete structure of the card. The method uses the quantum-physical fact that light particles (photons) can be in multiple locations at the same time. This fact is known from the famous double-slit experiment that forms the basis of quantum physics.

White paint
A card is equipped with a paper-thin layer of dry white paint which contains millions of nanoparticles. If you send a light particle into the paint it will, like in a pinball machine, 'bounce' between the nanoparticles until it escapes. If a bank sends a complicated pattern of light dots that's unique for each transaction (a 'question') into the paint, you will subsequently be able to detect a new unique pattern of escaping light particles (the 'answer') at the surface. The bank will only approve of the card if this pattern of dots is correct.

Quantum physics against digital attacks
If the bank uses 'normal' light in this with a lot more photons than just the light dots, an attacker can measure the entering dot pattern and return the correct dot pattern with, for example, a projector, so that the bank will not be able to see a difference between the real card and the signal of the attacker. The clever solution of the researchers springs from quantum physics. Because a photon can be in multiple locations at the same time it's possible to send a pattern into the paint that consists of fewer photons than light dots. Because there aren't enough photons in that case, an attacker can no longer measure the entire pattern, and will therefore not know which question the bank is asking. He will therefore have no idea which answer to send back, while the bank could check the answer with even just one photon.

Quantum, but not difficult
According to Prof. Dr Pepijn Pinkse, who leads the research, it is a unique way to provide security suitable for, for instance, (government) buildings, bank cards, credit cards, identification cards and cars. "The best thing about our method, which we've called Quantum Secure Authentication (QSA), is that secrets aren't necessary. So they can't be filched either." QSA can be employed in numerous situations relatively easily, as it uses simple and cheap technology which is already available. The layer of paint is cheap and easy to apply and the read out equipment consists of a simple laser (as in CD players), a simple image sensor and an image-forming chip as is present in every modern projector.

Research
The research has been performed by Sebastianus Goorden, Marcel Horstmann, Allard Mosk and Pepijn Pinkse of the MESA+ Institute for Nanotechnology in the Complex Photonic Systems group of the University of Twente, in collaboration with Boris Škorić of the Eindhoven University of Technology. This research has been made possible by funding from the Foundation for Fundamental Research on Matter (FOM), the STW Technology Foundation, the European Union and the Netherlands Organisation for Scientific Research (NWO).

####

For more information, please click here

Contacts:
Joost Bruysters
University of Twente
+31 (0) 6 1048 8228

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Physics

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Theory gives free rein to superconductivity at room temperature May 28th, 2018

Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations May 4th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Discoveries

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Announcements

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Quantum nanoscience

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project