Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fraud-proof credit card possible because of quantum physics

Abstract:
Cards, such as identification cards and credit cards, which are impossible to hack. With a system based on quantum physics this will soon be possible. Researchers from the UT research institute MESA+ and the Eindhoven University of Technology (TU/e) have together developed a method with which you can authenticate physical objects which are impossible to copy. The research has been published today in The Optical Society's (OSA) new high-impact journal Optica (and is shown on the cover).

Fraud-proof credit card possible because of quantum physics

Enschede, Netherlands | Posted on December 16th, 2014

Technologists are fighting a continuous battle with people with malicious intent to secure bank cards, credit cards, identification cards and locks of, for example, cars. In bank cards the magnetic stripes have been replaced with a chip with a small microprocessor and a secret code, but the chip can still be copied and hackers have recently managed to discover the accompanying code. Car thieves are currently also already able to steal cars by turning the digital door lock to suit their purpose. To achieve this they don't use a copy of the key but are, armed with just a laptop, able to imitate the 'question-answer' game that the lock plays with the key.

Researchers of the University of Twente have together with the Eindhoven University of Technology developed a method which makes it impossible to hack cards or imitate their properties, even if those with malicious intent have all the necessary information at their disposal, such as the complete structure of the card. The method uses the quantum-physical fact that light particles (photons) can be in multiple locations at the same time. This fact is known from the famous double-slit experiment that forms the basis of quantum physics.

White paint
A card is equipped with a paper-thin layer of dry white paint which contains millions of nanoparticles. If you send a light particle into the paint it will, like in a pinball machine, 'bounce' between the nanoparticles until it escapes. If a bank sends a complicated pattern of light dots that's unique for each transaction (a 'question') into the paint, you will subsequently be able to detect a new unique pattern of escaping light particles (the 'answer') at the surface. The bank will only approve of the card if this pattern of dots is correct.

Quantum physics against digital attacks
If the bank uses 'normal' light in this with a lot more photons than just the light dots, an attacker can measure the entering dot pattern and return the correct dot pattern with, for example, a projector, so that the bank will not be able to see a difference between the real card and the signal of the attacker. The clever solution of the researchers springs from quantum physics. Because a photon can be in multiple locations at the same time it's possible to send a pattern into the paint that consists of fewer photons than light dots. Because there aren't enough photons in that case, an attacker can no longer measure the entire pattern, and will therefore not know which question the bank is asking. He will therefore have no idea which answer to send back, while the bank could check the answer with even just one photon.

Quantum, but not difficult
According to Prof. Dr Pepijn Pinkse, who leads the research, it is a unique way to provide security suitable for, for instance, (government) buildings, bank cards, credit cards, identification cards and cars. "The best thing about our method, which we've called Quantum Secure Authentication (QSA), is that secrets aren't necessary. So they can't be filched either." QSA can be employed in numerous situations relatively easily, as it uses simple and cheap technology which is already available. The layer of paint is cheap and easy to apply and the read out equipment consists of a simple laser (as in CD players), a simple image sensor and an image-forming chip as is present in every modern projector.

Research
The research has been performed by Sebastianus Goorden, Marcel Horstmann, Allard Mosk and Pepijn Pinkse of the MESA+ Institute for Nanotechnology in the Complex Photonic Systems group of the University of Twente, in collaboration with Boris Škorić of the Eindhoven University of Technology. This research has been made possible by funding from the Foundation for Fundamental Research on Matter (FOM), the STW Technology Foundation, the European Union and the Netherlands Organisation for Scientific Research (NWO).

####

For more information, please click here

Contacts:
Joost Bruysters
University of Twente
+31 (0) 6 1048 8228

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Produces Cooling Fabrics Using Nanotechnology October 17th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Physics

Searching for errors in the quantum world September 21st, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Discoveries

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Announcements

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Quantum nanoscience

Quantum mechanics work lets oil industry know promise of recovery experiments September 28th, 2018

September 5th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project