Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New research paves the way for nano-movies of biomolecules: Scientists use X-ray laser as ultra slow-motion camera

Samples of the crystallized protein (right), called photoactive yellow protein or PYP, were jetted into the path of SLAC's LCLS X-ray laser beam (fiery beam from bottom left). The crystallized proteins had been exposed to blue light (coming from left) to trigger shape changes. Diffraction patterns created when the X-ray laser hit the crystals allowed scientists to recreate the 3-D structure of the protein (center) and determine how light exposure changes its shape. Credit: SLAC National Accelerator Laboratory
Samples of the crystallized protein (right), called photoactive yellow protein or PYP, were jetted into the path of SLAC's LCLS X-ray laser beam (fiery beam from bottom left). The crystallized proteins had been exposed to blue light (coming from left) to trigger shape changes. Diffraction patterns created when the X-ray laser hit the crystals allowed scientists to recreate the 3-D structure of the protein (center) and determine how light exposure changes its shape.

Credit: SLAC National Accelerator Laboratory

Abstract:
An international team, including scientists from DESY, has caught a light sensitive biomolecule at work with an X-ray laser. The study proves that X-ray lasers can capture the fast dynamics of biomolecules in ultra slow-motion, as the scientists led by Prof. Marius Schmidt from the University of Wisconsin-Milwaukee write in the journal Science. "Our study paves the way for movies from the nano world with atomic spatial resolution and ultrafast temporal resolution", says Schmidt.

New research paves the way for nano-movies of biomolecules: Scientists use X-ray laser as ultra slow-motion camera

Hamburg, Germany | Posted on December 4th, 2014

The researchers used the photoactive yellow protein (PYP) as a model system. PYP is a receptor for blue light that is part of the photosynthetic machinery in certain bacteria. When it catches a blue photon, it cycles through various intermediate structures as it harvests the energy of the photon, before it returns to its initial state. Most steps of this PYP photocycle have been well studied, making it an excellent candidate for validating a new method.

For their ultra-fast snapshots of the PYP dynamics, the scientists first produced tiny crystals of PYP molecules, most measuring less than 0.01 millimetres across. These microcrystals were sprayed into the focus of the world's most powerful X-ray laser, LCLS at the SLAC National Accelerator Laboratory in the US, as their photocycle was kicked off with a meticulously synchronised blue laser pulse. Thanks to the incredibly short and intense X-ray flashes of the LCLS, the researchers could watch how PYP changes its shape at different time steps in the photocycle, by taking snapshot X-ray diffraction patterns.

With a resolution of 0.16 nanometres, these are the most detailed images of a biomolecule ever made with an X-ray laser. A nanometre is a millionth of a millimetre. The diameter of the smallest atom, hydrogen, is about 0.1 nanometres.

Beyond reproducing known aspects of the PYP photocycle, thereby validating the new method, this investigation revealed much finer details. Also, thanks to the high temporal resolution, the X-ray laser could, in principle, study steps in the cycle that are shorter than 1 picosecond (a picosecond is a trillionth of a second) - too fast to be caught with previous techniques. The ultrafast snapshots can be assembled into a movie, showing the dynamics in ultra slow-motion.

"This is a real breakthrough", emphasises co-author Prof. Henry Chapman from the Center for Free-Electron Laser Science at DESY, who is also a member of the Hamburg Centre for Ultrafast Imaging. "Our study is opening the door for time resolved studies of dynamic processes with atomic resolution."

Compared to other methods, X-ray lasers, like the LCLS or the European XFEL that is currently being built from the DESY campus in Hamburg to the neighbouring town of Schenefeld, offer several advantages for the investigation of ultrafast dynamics of molecules. They produce the most brilliant X-ray flashes on earth, offering femtosecond time resolution. A femtosecond is a quadrillionth of a second. While 40 femtosecond X-ray flashes were used for this experiment, the pulse duration can be made even shorter down to just a few femtoseconds.

"You need a short pulse to resolve the steps of these fast processes", underlines co-author Dr. Anton Barty, also from DESY. "The short flashes also overcome the problem of damaging the often delicate samples with the intense X-rays." Although the powerful pulses usually vaporise the sample, they are so short that they produce a high-quality diffraction signal on the detector before the sample disintegrates. This principle, called diffraction before destruction, was proven a few years ago by an international collaboration led by DESY.

X-ray lasers use a fresh sample for every shot, which also avoids radiation damage that can accumulate in the samples in other types of investigations. And X-ray lasers typically investigate very small crystals that often are much easier to fabricate than larger crystals. In fact, some biomolecules are so hard to crystallise that they can only be investigated with an X-ray laser. The small crystal size is also an advantage when it comes to kick-starting molecular dynamics uniformly across the sample. In larger samples, the initiating optical laser pulse is often quickly absorbed in the sample, which excites only a thin layer and leaves the bulk of the crystal unaffected. The PYP microcrystal dimensions were perfectly matched to the optical absorption so that all molecules in the crystal were undergoing the same dynamics, which in turn allowed sensitive measurements of the molecular changes by snapshot X-ray diffraction.

Taken together, X-ray laser investigations can offer previously inaccessible new insights into the dynamics of the molecular world, complementing other methods. Using the ultra slow-motion, the scientists next plan to elucidate the fast steps of the PYP photocycle that are too short to be seen with previous methods.

###

The team included researchers from the University of Wisconsin-Milwaukee, Arizona State University, SLAC National Accelerator Center, Lawrence Livermore National Laboratory, DESY, University of New York Buffalo, University of Chicago and Imperial College London.

####

About Deutsches Elektronen-Synchrotron DESY
Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

For more information, please click here

Contacts:
Thomas Zoufal

49-408-998-1666

Copyright © Deutsches Elektronen-Synchrotron DESY

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Imaging

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Laboratories

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Nanomedicine

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Discoveries

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Announcements

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Tools

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Nanometrics Delivers 100th: Atlas III System for Advanced Process Control Metrology Atlas III: Systems are qualified and in production for advanced devices in DRAM, 3D-NAND and Foundry/Logic August 2nd, 2018

Picosunís ALD solutions make quality watches tick July 26th, 2018

Nanometrics Announces Participation in Upcoming Investor Conferences July 25th, 2018

Nanobiotechnology

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Photonics/Optics/Lasers

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Optical fibers that can 'feel' the materials around them August 7th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Research partnerships

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project