Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Shape of things to come in platelet mimicry: Technology may have broad use in medicine

By mimicking the shape, size, flexibility and surface chemistry of real platelets, artificial platelets are pushed out of the main blood flow to vessel walls. There, the surface chemistry enables them to anchor on damaged cells and induce faster clotting at the site.

Credit: Anirban Sen Gupta
By mimicking the shape, size, flexibility and surface chemistry of real platelets, artificial platelets are pushed out of the main blood flow to vessel walls. There, the surface chemistry enables them to anchor on damaged cells and induce faster clotting at the site.

Credit: Anirban Sen Gupta

Abstract:
Artificial platelet mimics developed by a research team from Case Western Reserve University and University of California, Santa Barbara, are able to halt bleeding in mouse models 65 percent faster than nature can on its own.

Shape of things to come in platelet mimicry: Technology may have broad use in medicine

Cleveland, OH | Posted on November 5th, 2014

For the first time, the researchers have been able to integratively mimic the shape, size, flexibility and surface chemistry of real blood platelets on albumin-based particle platforms. The researchers believe these four design factors together are important in inducing clots to form faster selectively at vascular injury sites while preventing harmful clots from forming indiscriminately elsewhere in the body.

The new technology, reported in the journal ACS Nano at http://pubs.acs.org/doi/abs/10.1021/nn503732m, is aimed at stemming bleeding in patients suffering from traumatic injury, undergoing surgeries or suffering clotting disorders from platelet defects or a lack of platelets. Further, the technology may be used to deliver drugs to target sites in patients suffering atherosclerosis, thrombosis or other platelet-involved pathologic conditions.

Anirban Sen Gupta, an associate professor of biomedical engineering at Case Western Reserve, previously designed peptide-based surface chemistries that mimic the clot-relevant activities of real platelets. Building on this work, Sen Gupta now focuses on incorporating morphological and mechanical cues that are naturally present in platelets to further refine the design.

"Morphological and mechanical factors influence the margination of natural platelets to the blood vessel wall, and only when they are near the wall can the critical clot-promoting chemical interactions take place," he said.

These natural cues motivated Sen Gupta to team up with Samir Mitragotri, a professor of chemical engineering at UC Santa Barbara, whose laboratory has recently developed albumin-based technologies to make particles that mimic the geometry and mechanical properties of red blood cells and platelets.

Together, the team has developed artificial platelet-like nanoparticles (PLNs) that combine morphological, mechanical and surface chemical properties of natural platelets.

The researchers believe this refined design will be able to simulate natural platelet's ability to collide effectively with larger and softer red blood cells in systemic blood flow. The collisions cause margination—pushing the platelets out of the main flow and closer to the blood vessel wall— increasing the probability of interacting with an injury site.

The surface coatings enable the artificial platelets to anchor to injury-site-specific proteins, von Willebrand Factor and collagen, while inducing the natural and artificial platelets to aggregate faster at the injury site.

Testing in mouse models showed that intravenous injection of these artificial platelets formed clots at the site of injury three times faster than natural platelets alone in control mice.

The ability to interact selectively with injury site proteins, as well as the ability to remain mechanically flexible like natural platelets, enables these artificial platelets to safely ride through the smallest of blood vessels without causing unwanted clots.

Albumin, a protein found in blood serum and eggs, is already used with cancer drugs and considered a safe material. Artificial platelets that don't become involved in a clot and continue to circulate are metabolized within one to two days.

The researchers believe the new artificial platelet design may be even more effective in larger volume blood flows where margination to the blood vessel wall is more prominent. They expect to soon begin testing those capabilities.

This research was previously funded by American Heart Association and is currently funded by National Institutes of Health.

In addition to stemming bleeding, Sen Gupta believes the technology could also be useful in delivering clot-busting medicines directly to clots, to treat heart attack or stroke without having to systemically suspend the body's coagulation mechanism. The artificial platelets may also be used to deliver cancer medicines to metastatic tumors that have high platelet interactions. Sen Gupta is seeking grants to pursue that work.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-534-7183

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project