Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication

Abstract:
University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major implications for creating faster and more efficient optical devices for computation and communication.

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication

Minneapolis, MN | Posted on September 22nd, 2014

The research paper by University of Minnesota electrical and computer engineering assistant professor Mo Li and his graduate student Huan Li has been published online and will appear in the October issue of Nature Nanotechnology.

Researchers developed a novel nanoscale device that can capture, measure and transport fundamental particles of light, called photons. The tiny device is just .7 micrometers by 50 micrometer (about .00007 by .005 centimeters) and works almost like a seesaw. On each side of the "seesaw benches," researchers etched an array of holes, called photonic crystal cavities. These cavities capture photons that streamed from a nearby source.

Even though the particles of light have no mass, the captured photons were able to play seesaw because they generated optical force. Researchers compared the optical forces generated by the photons captured in the cavities on the two sides of the seesaw by observing how the seesaw moved up and down. In this way, the researchers weighed the photons. Their device is sensitive enough to measure the force generated by a single photon, which corresponds to about one-third of a thousand-trillionth of a pound or one-seventh of a thousand-trillionth of a kilogram.

Professor Li and his research team also used the seesaw to experimentally demonstrate for the first time the mechanical control of transporting light.

"When we filled the cavity on the left side with photons and leave the cavity on the right side empty, the force generated by the photons started to oscillate the seesaw. When the oscillation was strong enough, the photons can spill over along the beam from the filled cavity to the empty cavity during each cycle," Li said. "We call the phenomenon ‘photon shuttling.'"

The stronger the oscillation, the more photons are shuttled to the other side. Currently the team has been able to transport approximately 1,000 photons in a cycle. For comparison, a 10W light bulb emits 1020 photons every second. The team's ultimate goal is to transport only one photon in a cycle so that the quantum physics of light can be revealed and harnessed.

"The ability to mechanically control photon movement as opposed to controlling them with expensive and cumbersome optoelectronic devices could represent a significant advance in technology," said Huan Li, the lead author of the paper.

The research could be used to develop an extremely sensitive micromechanical way to measure acceleration of a car or a runner, or could be used as part of a gyroscope for navigation, Li said.

In the future, the researchers plan to build sophisticated photon shuttles with more traps on either side of the seesaw device that could shuttle photons over greater distances and at faster speeds. They expect that such devices could play a role in developing microelectronic circuits that would use light instead of electrons to carry data, which would make them faster and consume less power than traditional integrated circuits.

The team's research was funded by the Air Force Office of Scientific Research. The device was fabricated in the cleanroom at the Minnesota Nano Center at the University of Minnesota.

####

For more information, please click here

Contacts:
Rhonda Zurn

612-626-7959


Brooke Dillon
University News Service (612) 624-2801

Copyright © University of Minnesota

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read the full research paper entitled “Optomechanical photon shuttling between photonic cavities,” visit the Nature Nanotechnology website:

Related News Press

News and information

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Optical computing/Photonic computing

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Save time using maths: Analytical tool designs corkscrew-shaped nano-antennae August 23rd, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Discoveries

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Announcements

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Military

A chameleon-inspired smart skin changes color in the sun September 11th, 2019

Hard as a diamond? Scientists predict new forms of superhard carbon: A study identifies dozens of new carbon structures that are expected to be superhard, including some that may be about as hard as diamonds September 9th, 2019

A swifter way towards 3D-printed organs: Sacrificial ink-writing technique allows 3D printing of large, vascularized human organ building blocks September 6th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Photonics/Optics/Lasers

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Scientists create a nanomaterial that is both twisted and untwisted at the same time: The material developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist September 13th, 2019

Optical vacuum cleaner can manipulate nanoparticles: The TPU and international researchers developed a concept for constructing an optical vacuum cleaner; due to its optical properties, it can trap nanoparticles from the environment; currently, there are no sufficiently effective September 13th, 2019

Laser-based ultrasound approach provides new direction for nondestructive testing: Patches coated with nanoparticles from candle soot found to generate ultrasonic waves that can be used to monitor the structural integrity of buildings September 4th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project