Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks

Abstract:
A consortium of 15 leading telecommunications operators, vendors, research centers and academic institutions have launched "MiWaveS" (Millimeter-Wave Small Cell Access and Backhauling), a European collaborative project whose goal is to develop millimeter-wave (mmW) key radio technologies to provide multi-Gbps data rates to future 5th Generation cellular mobile networks users.

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks

Grenoble, France | Posted on August 28th, 2014

The global mobile data traffic is expected to increase by orders of magnitude in the next decade, driven by video streaming, web services, cloud computing and machine-to-machine applications. Data rates provided to mobile users are also expected to increase accordingly. The evolution of mobile networks towards these objectives is impeded by major bottlenecks, such as the scarcity of spectrum resources below 6 GHz leading to high interference levels, the public concern about microwave electromagnetic field (EMF) exposure in dense areas, the power consumption of the infrastructure, and the flexibility and robustness of the network.

Dr. Laurent Dussopt, MiWaveS project manager and Leti research engineer, explains that "the flexible spectrum usage of the mmW frequency bands at 60 GHz and 71-86 GHz will enable data transmissions up to 10 Gbps for backhaul and 5 Gbps for mobile users access". He also indicates that "MiWaveS' objectives lead to significant challenges on the system architecture, networking functions and algorithms, radio and antenna technologies".

MiWaveS is expected to have a major impact on the key enabling technologies for the next generation of heterogeneous wireless networks. The deployment of mmW small cells in dense urban areas will not only improve the flexibility of the access infrastructure, but also the spectral and energy efficiency by low-power access points using mmW spectrum resources.

The MiWaveS project is partially funded by the European Commission's Seventh Framework Program.

(FP7), within the Work Programme for Information and Communication Technologies under the objective "Network of the Future". This objective supports the development of future network infrastructures that allow the convergence and interoperability of heterogeneous mobile, wired and wireless broadband network technologies as enablers of the future Internet.

The MiWaveS consortium relies on the diverse and complementary expertise of its members: CEA-Leti (FR), Telecom Italia (IT), Orange (FR), Nokia (FI), Intel Mobile Communications (DE), National Instruments Dresden (DE), STMicroelectronics (FR, IT), Sivers IMA (SE), Optiprint (CH), VTT (FI), Tech. Univ. Dresden (DE), Tecnologias Servicios Telematicos y Systemas (ES), Univ. of Rennes 1 (FR), Univ. of Surrey (UK).

The MiWaveS project was launched at the beginning of January 2014, and will last for three years.

####

About CEA-Leti
By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m˛ of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Leti’s staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo.

For more information, please click here

Contacts:
CEA-Leti
Pierre-Damien Berger
+33 4 38 78 02 26


Dr. Laurent Dussopt (project coordinator)
+33 (0)4 38 78 58 98


Agency
Amelie Ravier
+33 6 64 52 81 10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Wireless/telecommunications/RF/Antennas/Microwaves

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Alliances/Trade associations/Partnerships/Distributorships

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Research partnerships

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project