Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices

Biwu Ma, associate professor in the Department of Chemical and Biomedical Engineering in the FAMU-FSU College of Engineering.
Biwu Ma, associate professor in the Department of Chemical and Biomedical Engineering in the FAMU-FSU College of Engineering.

Abstract:
Exciting new work by a Florida State University research team has led to a novel molecular system that can take your temperature, emit white light, and convert photon energy directly to mechanical motions.

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices

Tallhassee, FL | Posted on August 28th, 2014

And, the molecule looks like a butterfly.

Biwu Ma, associate professor in the Department of Chemical and Biomedical Engineering in the FAMU-FSU College of Engineering, created the molecule in a lab about a decade ago, but has continued to discover that his creation has many other unique capabilities.

For example, the molecular butterfly can flap its "wings" and emit both blue and red light simultaneously in certain environments. This dual emission means it can create white light from a single molecule, something that usually takes several luminescent molecules to achieve.

And, it is extremely sensitive to temperature, which makes it a thermometer, registering temperature change by emission color.

"This work is about basic, fundamental science, but also about how we can use these unique findings in our everyday lives," Ma said.

Among other things, Ma and his team are looking at creating noninvasive thermometers that can take better temperature readings on infants, and nanothermometers for intracellular temperature mapping in biological systems. They are also trying to create molecular machines that are operated simply by sunlight.

"These new molecules have shown very interesting properties with a variety of potential applications in emerging fields," Ma said. "I have been thinking of working on them for quite a long time. It is so wonderful to be able to make things really happen with my new team here in Tallahassee."

The findings are laid out in the latest edition of the academic journal Angewandte Chemie. Other authors for this publication are Mingu Han, Yu Tian, Zhao Yuan and Lei Zhu from the Chemistry and Biochemistry Department. Florida State has also filed a patent application on the work.

Ma came to Florida State in 2013 from the Lawrence Berkeley National Laboratory as part of a strategic push by the university to aggressively recruit and hire up-and-coming researchers in energy and materials science.

In addition to the faculty hires, the university has invested in top laboratory space and other resources needed to help researchers make technology breakthroughs.

"This type of research is why we continue to invest in materials science and recruit faculty like Biwu Ma to Florida State," said Vice President for Research Gary K. Ostrander. "Making this area of research a priority shows why FSU is a preeminent institution, and we look forward to what Biwu and our other scientists can accomplish in the years to come."

####

For more information, please click here

Contacts:
Kathleen Haughney

850-644-1489

Copyright © Florida State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Nanomedicine

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Sensors

Chains of nanogold – forged with atomic precision September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Solar/Photovoltaic

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic