Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New technique uses fraction of measurements to efficiently find quantum wave functions

Abstract:
The result of every possible measurement on a quantum system is coded in its wave function, which until recently could be found only by taking many different measurements of a system and estimating a wave function that best fit all those measurements. Just two years ago, with the advent of a technique called direct measurement, scientists discovered they could reliably determine a system's wave function by "weakly" measuring one of its variables (e.g. position) and "strongly" measuring a complementary variable (momentum). Researchers at the University of Rochester have now taken this method one step forward by combining direct measurement with an efficient computational technique.

New technique uses fraction of measurements to efficiently find quantum wave functions

Rochester, NY | Posted on August 28th, 2014

The new method, called compressive direct measurement, allowed the team to reconstruct a quantum state at 90 percent fidelity (a measure of accuracy) using only a quarter of the measurements required by previous methods.

"We have, for the first time, combined weak measurement and compressive sensing to demonstrate a revolutionary, fast method for measuring a high-dimensional quantum state," said Mohammad Mirhosseini, a graduate student in the Quantum Photonics research group at the University of Rochester and lead author of a paper appearing today in Physical Review Letters.

The research team, which also included graduate students Omar Magaña-Loaiza and Seyed Mohammad Hashemi Rafsanjani, and Professor Robert Boyd, initially tested their method on a 192-dimensional state. Finding success with that large state, they then took on a massive, 19,200-dimensional state. Their efficient technique sped up the process 350-fold and took just 20 percent of the total measurements required by traditional direct measurement to reconstruct the state.

"To reproduce our result using a direct measurement alone would require more than one year of exposure time," said Rafsanjani. "We did the experiment in less than 48 hours."

While recent compressive sensing techniques have been used to measure sets of complementary variables like position and momentum, Mirhosseini explains that their method allows them to measure the full wave function.

Compression is widely used in the classical world of digital media, including recorded music, video, and pictures. The MP3s on your phone, for example, are audio files that have had bits of information squeezed out to make the file smaller at the cost of losing a small amount of audio quality along the way.

In digital cameras, the more pixels you can gather from a scene, the higher the image quality and the larger the file will be. But it turns out that most of those pixels don't convey essential information that needs to be captured from the scene. Most of them can be reconstructed later. Compressive sensing works by randomly sampling portions from all over the scene, and using those patterns to fill in the missing information.

Similarly for quantum states, it is not necessary to measure every single dimension of a multidimensional state. It takes only a handful of measurements to get a high-quality image of a quantum system.

The method introduced by Mirhosseini et al. has important potential applications in the field of quantum information science. This research field strives to make use of fundamental quantum effects for diverse applications, including secure communication, teleportation of quantum states, and ideally to perform quantum computation. This latter process holds great promise as a method that can, in principle, lead to a drastic speed-up of certain types of computation. All of these applications require the use of complicated quantum states, and the new method described here offers an efficient means to characterize these states.

###

Research funding was provided by the Defense Advanced Research Projects Agency's (DARPA) Information in a Photon (InPho) program, U.S. Defense Threat Reduction Agency (DTRA), National Science Foundation (NSF), El Consejo Nacional de Ciencia y Tecnología (CONACYT) and Canadian Excellence Research Chair (CERC).

####

For more information, please click here

Contacts:
Peter Iglinski

585-273-4726

Copyright © University of Rochester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Physics

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Military

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Linking superconductivity and structure May 28th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Research partnerships

Linking superconductivity and structure May 28th, 2015

How spacetime is built by quantum entanglement: New insight into unification of general relativity and quantum mechanics May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Quantum nanoscience

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project