Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium

n this illustration, a patterned 3-D grid of tiny whirlpools, called quantum vortices, populates a nanoscale droplet of superfluid helium. Researchers found that in a micron-sized droplet, the density of vortices was 100,000 times greater than in any previous experiment on superfluids. An artistic rendering of a wheel-shaped droplet can be seen in the distance. SLAC National Accelerator Laboratory
n this illustration, a patterned 3-D grid of tiny whirlpools, called quantum vortices, populates a nanoscale droplet of superfluid helium. Researchers found that in a micron-sized droplet, the density of vortices was 100,000 times greater than in any previous experiment on superfluids. An artistic rendering of a wheel-shaped droplet can be seen in the distance.

SLAC National Accelerator Laboratory

Abstract:
An experiment at the Department of Energy's SLAC National Accelerator Laboratory revealed a well-organized 3-D grid of quantum "tornadoes" inside microscopic droplets of supercooled liquid helium - the first time this formation has been seen at such a tiny scale.

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium

Menlo Park, CA | Posted on August 25th, 2014

The findings by an international research team provide new insight on the strange nanoscale traits of a so-called "superfluid" state of liquid helium. When chilled to extremes, liquid helium behaves according to the rules of quantum mechanics that apply to matter at the smallest scales and defy the laws of classical physics. This superfluid state is one of just a few examples of quantum behavior on a large scale that makes the behavior easier to see and study.

The results, detailed in the Aug. 22 issue of Science, could help shed light on similar quantum states, such as those in superconducting materials that conduct electricity with 100 percent efficiency or the strange collectives of particles, dubbed Bose-Einstein condensates, which act as a single unit.

"What we found in this experiment was really surprising. We did not expect the beauty and clarity of the results," said Christoph Bostedt, a co-leader of the experiment and a senior scientist at SLAC's Linac Coherent Light Source (LCLS), the DOE Office of Science User Facility where the experiment was conducted.

"We were able to see a manifestation of the quantum world on a macroscopic scale," said Ken Ferguson, a PhD student from Stanford University working at LCLS.

While tiny tornadoes had been seen before in chilled helium, they hadn't been seen in such tiny droplets, where they were packed 100,000 times more densely than in any previous experiment on superfluids, Ferguson said.

Studying the Quantum Traits of a Superfluid

Helium can be cooled to the point where it becomes a frictionless substance that remains liquid well below the freezing point of most fluids. The light, weakly attracting atoms have an endless wobble - a quantum state of perpetual motion that prevents them from freezing. The unique properties of superfluid helium, which have been the subject of several Nobel prizes, allow it to coat and climb the sides of a container, and to seep through molecule-wide holes that would have held in the same liquid at higher temperatures.

In the LCLS experiment, researchers jetted a thin stream of helium droplets, like a nanoscale string of pearls, into a vacuum. Each droplet acquired a spin as it flew out of the jet, rotating up to 2 million turns per second, and cooled to a temperature colder than outer space. The X-ray laser took snapshots of individual droplets, revealing dozens of tiny twisters, called "quantum vortices," with swirling cores that are the width of an atom.

The fast rotation of the chilled helium nanodroplets caused a regularly spaced, dense 3-D pattern of vortices to form. This exotic formation, which resembles the ordered structure of a solid crystal and provides proof of the droplets' quantum state, is far different than the lone whirlpool that would form in a regular liquid, such as briskly stirred cup of coffee.

More Surprises in Store

Researchers also discovered surprising shapes in some superfluid droplets. In a normal liquid, droplets can form peanut shapes when rotated swiftly, but the superfluid droplets took a very different form. About 1 percent of them formed unexpected wheel-like shapes and reached rotation speeds never before observed for their classical counterparts.

Oliver Gessner, a senior scientist at Lawrence Berkeley Laboratory and a co-leader in the experiment, said, "Now that we have shown that we can detect and characterize quantum rotation in helium nanodroplets, it will be important to understand its origin and, ultimately, to try to control it."

Andrey Vilesov of the University of Southern California, the third experiment co-leader, added, "The experiment has exceeded our best expectations. Attaining proof of the vortices, their configurations in the droplets and the shapes of the rotating droplets was only possible with LCLS imaging."

He said further analysis of the LCLS data should yield more detailed information on the shape and arrangement of the vortices: "There will definitely be more surprises to come."

Other research collaborators were from the Stanford PULSE Institute; University of California, Berkeley; the Max Planck Society; Center for Free-Electron Laser Science at DESY; PNSensor GmbH; Chinese University of Hong Kong; and Kansas State University. This work was supported by the National Science Foundation, the U.S. Department of Energy Office of Science and the Max Planck Society.

####

About SLAC National Accelerator Laboratory
SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Andrew Gordon

(650) 926-2282

Copyright © SLAC National Accelerator Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Citation: Luis F. Gomez, Ken R. Ferguson et al., Science, 22 August 2014 (10.1126/science.1252395):

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Laboratories

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Physics

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Imaging

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Discoveries

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Research partnerships

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

European roadmap for graphene science and technology published February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Quantum nanoscience

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE