Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Newly-Developed Nanobiosensor Quickly Diagnoses Cancer

Abstract:
Iranian materials engineering researchers from Sharif University of Technology produced a biosensor for the early diagnosis of cancer.

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer

Tehran, Iran | Posted on August 20th, 2014

The sensor has been made of nanostructured materials, and has high sensitivity and stability while it can be produced through a cost-effective method.

One of the most famous genes in cancer researches is TP53 tumor gene. The determination of its mutation is an important parameter in the detection of tumor respond to treatment. Aggressive growth of some types of cancers is caused by the mutation of this gene. Therefore, the detection and investigation of specific sequence of the gene can be very useful to observe the progress of cancer and treatment of the patient. It can be concluded that the production of a very sensitive biosensor and the development of quick DNA detection methods are vital for early diagnosis of cancer. Among the present methods, electrochemical biosensors provide the chance for simple, quick and sensitive detection of DNA sequence (hybridation phenomenon).

The aim of the research was to produce and study an ultra sensitive nanobiosensor for quick detection of DNA sequences related to the mutation of cancer genes, including TP53, for early diagnosis and treatment of cancers in humans. TP53 cancer gene has been introduced as one of the most famous genes in cancer researches.

Simple production method, low cost, quick response, high sensitivity and wide linear detection range are among the characteristics of the produced nanobiosensor. The sensor also has appropriate stability (14 days) and selectivity, and it has the ability to be reproduced.

A part of the research has been recently published in Alaytica Chimica Acta, vol. 836, issue 1, August 2014, pp. 34-44.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single Ďsolitonsí promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Discoveries

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project