Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld

Alissa Wiengarten, PhD student at the TUM Department of Physics, heats a porphine powder in a vacuum chamber.Photo: Thorsten Naeser/Munich-Centre for Advanced Photonics
Alissa Wiengarten, PhD student at the TUM Department of Physics, heats a porphine powder in a vacuum chamber.

Photo: Thorsten Naeser/Munich-Centre for Advanced Photonics

Abstract:
Dr. Wilhelm Auwärter and his team are working on a research project to develop tiny flat molecule tapes at the Department of Physics of Technische Universität München (TUM). These structures could find versatile applications. Via direct coupling on a silver surface, the scientists successfully formed dimers and short chains of porphine molecules without contaminating by-products.

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld

Muenchen, Germany | Posted on August 13th, 2014

Porphyrin molecules are essential to many biological processes, such as photosynthesis and respiration. Dr. Wilhelm Auwärter's group is investigating these all-round talents at TU München. Normally, hydrogen attaches to the outer edges of the porphyrin core - named porphine, but other chemical entities can take the place of hydrogen, thereby changing the properties of the molecules.

Alissa Wiengarten, PhD student at the TUM Department of Physics, heats a porphine powder in a vacuum chamber. In the process, individual porphine molecules leave the collective and adhere to a silver surface, where they react with each other and assemble into small groups - all by themselves. Single molecules can desorb from the hot surface, while chains of two, three or more porphine units cannot. In this way the scientists were able to assemble chains of up to 90 porphine units.

Thorough analysis

Using a surface made of silver is essential to the experiment: "Silver seems to be a kind of catalyst for the reaction", Wilhelm Auwärter explains. "Still, we don't fully understand why this is the case."

Aside from fundamental questions, Auwärter's group also hopes to find a way to generate ordered long molecular porphin chains, so-called tapes. Only one molecule wide, such structures could serve as optically active elements in electronic applications or data storage.

In order to investigate these tiny structures on the silver surface, Auwärter's team uses a whole range of sophisticated structure analysis techniques available at TUM and through cooperation with international partners.

Fascinating images of the molecular structures, for example, were captured using a scanning tunneling microscope at TUM. The team also conducted spectroscopy analyses using synchrotron radiation of the ELETTRA storage ring in Trieste, which provided important insights into the electronic structure of the porphine groups.

About the project:
The work was funded by the ERC (Advanced Grant MolArt), by the German Research Foundation (DFG) (Cluster of Excellence Munich Center for Advanced Photonics (MAP) and Technische Universität München's Institute for Advanced Study), a Marie Curie Intra-European Fellowship and the International Max Planck Research School of Advanced Photon Science (IMPRS-APS), as well as the Japanese International Center for Young Scientists (ICYS) and the International Center for Materials Nanoarchitectonics (MANA). The synchrotron experiments were carried out at the Helmholtz-Zentrum Berlin's electron storage ring BESSY II and the Materials Science Beamline of the synchroton facility ELETTRA in Trieste (Italy).

####

For more information, please click here

Contacts:
Stefanie Reiffert


Dr. Wilhelm Auwärter
Department of Physics
+49 (89) 289 - 12399

www.e20.ph.tum.de

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Discoveries

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Announcements

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Energy

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Nanobiotechnology

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project