Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing

Abstract:
Researchers from the ICN2's Nanobioelectronics and Biosensors Group, led by the ICREA Prof. Arben Merkoši, published in Advanced Functional Materials an important starting point for the design and fabrication of flexible, organic biosensing devices by inkjet printing.

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing

Barcelona, Spain | Posted on August 11th, 2014

Thin-film transistors (TFTs) are powerful devices in semiconductor manufacturing and form the basis of countless electronic devices, such as memory chips, photovoltaic cells, logic gates, and sensors. An interesting alternative to inorganic TFTs (silicon) is organic TFTs (OTFTs), which offer the possibility of mass production by using the conventional printing technology and working with low-cost materials. However, numerous inherent problems still remain, especially concerning the long-term stability and lack of reliability.

Researchers from the Institut CatalÓ de NanociŔncia i Nanotecnologia's (ICN2 - Catalan Institute of Nanoscience and Nanotechnology) Nanobioelectronics and Biosensors Group, led by the ICREA Research Prof Arben Merkoši, work to get OTFTs closer to devices which can be fully applied in field applications. The Group published in the last issue of Advanced Functional Materials an article describing a flexible, biological field-effect transistor (BioFET) for use in biosensing. The fabrication, structure, materials optimization, electrical characteristics, and functionality of the starting OTFT and final BioFET are also discussed. The authors of the article are Dr Mariana Medina-Sßnchez, Dr Carme MartÝnez-Domingo, Dr Eloi Ramon, and ICREA Research Prof Arben Merkoši.

A fully integrated organic BioFET was designed, fabricated and tested for label-free protein detection. It was made by inkjet printing of an organic field-effect transistor (OFET) and subsequent functionalization of the insulator with specific antibodies. ICN2 researchers analysed different insulators, the biofunctionalization of the surface, the selective adhesion of target proteins to the BioFET, the repeatability with different devices and the roughness of functionalized and immobilized protein structures. Finally, as proof of concept, the BioFET platform was successfully tested for detection of the model protein, human immunoglobulin G (HIgG).

The BioFET designed at ICN2 represents an important starting point for the design and fabrication of flexible, organic biosensing devices by inkjet printing. The reproducibility in the fabrication process, the development of functional inks and extension of this technology to a wider array of substrates are still unsolved issues. The authors are confident that once this technology has matured, it will be amenable to miniaturization for integration into a fully functional device for point-of-care diagnosis.

####

For more information, please click here

Contacts:
└lex ArgemÝ
ICN2
Marketing and Communication Manager

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article Reference:

Related News Press

News and information

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Thin films

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Chip Technology

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Surprise discovery in the search for energy efficient information storage August 10th, 2017

Memory Technology

Surprise discovery in the search for energy efficient information storage August 10th, 2017

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Sensors

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Discoveries

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Announcements

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Solar/Photovoltaic

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Researchers printed graphene-like materials with inkjet August 17th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project