Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing

Abstract:
Researchers from the ICN2's Nanobioelectronics and Biosensors Group, led by the ICREA Prof. Arben Merkoçi, published in Advanced Functional Materials an important starting point for the design and fabrication of flexible, organic biosensing devices by inkjet printing.

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing

Barcelona, Spain | Posted on August 11th, 2014

Thin-film transistors (TFTs) are powerful devices in semiconductor manufacturing and form the basis of countless electronic devices, such as memory chips, photovoltaic cells, logic gates, and sensors. An interesting alternative to inorganic TFTs (silicon) is organic TFTs (OTFTs), which offer the possibility of mass production by using the conventional printing technology and working with low-cost materials. However, numerous inherent problems still remain, especially concerning the long-term stability and lack of reliability.

Researchers from the Institut Catalŕ de Nanocičncia i Nanotecnologia's (ICN2 - Catalan Institute of Nanoscience and Nanotechnology) Nanobioelectronics and Biosensors Group, led by the ICREA Research Prof Arben Merkoçi, work to get OTFTs closer to devices which can be fully applied in field applications. The Group published in the last issue of Advanced Functional Materials an article describing a flexible, biological field-effect transistor (BioFET) for use in biosensing. The fabrication, structure, materials optimization, electrical characteristics, and functionality of the starting OTFT and final BioFET are also discussed. The authors of the article are Dr Mariana Medina-Sánchez, Dr Carme Martínez-Domingo, Dr Eloi Ramon, and ICREA Research Prof Arben Merkoçi.

A fully integrated organic BioFET was designed, fabricated and tested for label-free protein detection. It was made by inkjet printing of an organic field-effect transistor (OFET) and subsequent functionalization of the insulator with specific antibodies. ICN2 researchers analysed different insulators, the biofunctionalization of the surface, the selective adhesion of target proteins to the BioFET, the repeatability with different devices and the roughness of functionalized and immobilized protein structures. Finally, as proof of concept, the BioFET platform was successfully tested for detection of the model protein, human immunoglobulin G (HIgG).

The BioFET designed at ICN2 represents an important starting point for the design and fabrication of flexible, organic biosensing devices by inkjet printing. The reproducibility in the fabrication process, the development of functional inks and extension of this technology to a wider array of substrates are still unsolved issues. The authors are confident that once this technology has matured, it will be amenable to miniaturization for integration into a fully functional device for point-of-care diagnosis.

####

For more information, please click here

Contacts:
Ŕlex Argemí
ICN2
Marketing and Communication Manager

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article Reference:

Related News Press

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Thin films

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Chip Technology

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Memory Technology

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Discoveries

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project