Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses

MIT professor Paula Hammond (right) and Bryan Hsu PhD' 14 have developed a nanoscale film that can be used to deliver medication, either directly through injections, or by coating implantable medical devices.

Photo: Dominick Reuter
MIT professor Paula Hammond (right) and Bryan Hsu PhD' 14 have developed a nanoscale film that can be used to deliver medication, either directly through injections, or by coating implantable medical devices.

Photo: Dominick Reuter

Abstract:
About one in four older adults suffers from chronic pain. Many of those people take medication, usually as pills. But this is not an ideal way of treating pain: Patients must take medicine frequently, and can suffer side effects, since the contents of pills spread through the bloodstream to the whole body.

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses

Cambridge, MA | Posted on August 6th, 2014

Now researchers at MIT have refined a technique that could enable pain medication and other drugs to be released directly to specific parts of the body and in steady doses over a period of up to 14 months. The method uses biodegradable, nanoscale "thin films" laden with drug molecules that are absorbed into the body in an incremental process.

"It's been hard to develop something that releases [medication] for more than a couple of months," says Paula Hammond, the David H. Koch Professor in Engineering at MIT, and a co-author of a new paper on the advance. "Now we're looking at a way of creating an extremely thin film or coating that's very dense with a drug, and yet releases at a constant rate for very long time periods."

In the paper, published today in the Proceedings of the National Academy of Sciences, the researchers describe the method used in the new drug-delivery system, which significantly exceeds the release duration achieved by most commercial controlled-release biodegradable films.

"You can potentially implant it and release the drug for more than a year without having to go in and do anything about it," says Bryan Hsu PhD '14, who helped develop the project as a doctoral student in Hammond's lab. "You don't have to go recover it. Normally to get long-term drug release, you need a reservoir or device, something that can hold back the drug. And it's typically nondegradable. It will release slowly, but it will either sit there and you have this foreign object retained in the body, or you have to go recover it."

Layer by layer

The paper was co-authored by Hsu, Myoung-Hwan Park of Shamyook University in South Korea, Samantha Hagerman '14, and Hammond, whose lab is in the Koch Institute for Integrative Cancer Research at MIT.

The research project tackles a difficult problem in localized drug delivery: Any biodegradable mechanism intended to release a drug over a long time period must be sturdy enough to limit hydrolysis, a process by which the body's water breaks down the bonds in a drug molecule. If too much hydrolysis occurs too quickly, the drug will not remain intact for long periods in the body. Yet the drug-release mechanism needs to be designed such that a drug molecule does, in fact, decompose in steady increments.

To address this, the researchers developed what they call a "layer-by-layer" technique, in which drug molecules are effectively attached to layers of thin-film coating. In this specific case, the researchers used diclofenac, a nonsteroidal anti-inflammatory drug that is often prescribed for osteoarthritis and other pain or inflammatory conditions. They then bound it to thin layers of poly-L-glutamatic acid, which consists of an amino acid the body reabsorbs, and two other organic compounds. The film can be applied onto degradable nanoparticles for injection into local sites or used to coat permanent devices, such as orthopedic implants.

In tests, the research team found that the diclofenac was steadily released over 14 months. Because the effectiveness of pain medication is subjective, they evaluated the efficacy of the method by seeing how well the diclofenac blocked the activity of cyclooxygenase (COX), an enzyme central to inflammation in the body.

"We found that it remains active after being released," Hsu says, meaning that the new method does not damage the efficacy of the drug. Or, as the paper notes, the layer-by-layer method produced "substantial COX inhibition at a similar level" to pills.

The method also allows the researchers to adjust the quantity of the drug being delivered, essentially by adding more layers of the ultrathin coating.

A viable strategy for many drugs

Hammond and Hsu note that the technique could be used for other kinds of medication; an illness such as tuberculosis, for instance, requires at least six months of drug therapy.

"It's not only viable for diclofenac," Hsu says. "This strategy can be applied to a number of drugs."

Indeed, other researchers who have looked at the paper say the potential medical versatility of the thin-film technique is of considerable interest.

"I find it really intriguing because it's broadly applicable to a lot of systems," says Kathryn Uhrich, a professor in the Department of Chemistry and Chemical Biology at Rutgers University, adding that the research is "really a nice piece of work."

To be sure, in each case, researchers will have to figure out how best to bind the drug molecule in question to a biodegradable thin-film coating. The next steps for the researchers include studies to optimize these properties in different bodily environments and more tests, perhaps with medications for both chronic pain and inflammation.

A major motivation for the work, Hammond notes, is "the whole idea that we might be able to design something using these kinds of approaches that could create an [easier] lifestyle" for people with chronic pain and inflammation.

Hsu and Hammond were involved in all aspects of the project and wrote the paper, while Hagerman and Park helped perform the research, and Park helped analyze the data.

The research described in the paper was supported by funding from the U.S. Army and the U.S. Air Force.

####

For more information, please click here

Contacts:
Abby Abazorius

Phone: 617-253-2709
MIT News Office

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Thin films

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

Self-assembled nanotextures create antireflective surface on silicon solar cells: Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity January 21st, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Researchers develop novel multiferroic materials and devices integrated with silicon chips January 13th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Nanomedicine

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces presentation at nano tech 2015 in Japan January 21st, 2015

A spoonful of sugar in silver nanoparticles to regulate their toxicity January 21st, 2015

Discoveries

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Announcements

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Military

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE