Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Flexible Metamaterial Absorbers

Abstract:
A research team in Korea has created flexible metamaterial absorbers designed to suppress electromagnetic radiation from mobile electronics.

Flexible Metamaterial Absorbers

College Park, MD | Posted on July 29th, 2014

Electromagnetic metamaterials boast special properties not found in nature and are rapidly emerging as a hot research topic for reasons extending far beyond "invisibility cloaks."

One other use for metamaterials is as "absorbers" of electromagnetic radiation. In the journal Applied Physics Letters, from AIP Publishing, a research team in Korea reports creating a flexible metamaterial absorber, based on tiny "snake-shaped" unit cells, with the ability to suppress electromagnetic radiation from mobile electronics and other electronic devices.

A negative index of refraction is one metamaterial "superpower" that enables applications such as a super lenses, cloaks, absorbers, and countless others, to operate at frequencies ranging from radio to visible.

By tapping into a negative index of refraction, metamaterial absorbers can be created that are both smaller in size and thickness than conventional absorbers. "The unit size of typical metamaterial absorbers, however, is still only 1/3 to 1/5 of the wavelength of the incident electromagnetic wave," explained YoungPak Lee, a physics professor at Hanyang University in Seoul, Korea.

The team's first attempt at designing a metamaterial absorber for long-wavelength MHz electromagnetic waves didn't turn out as planned-- the unit size actually increased, which limited its applications in suppressing the radiation from mobile devices and other electric equipment.

This turned out to be a good thing because as they addressed this problem, Lee and colleagues ended up discovering a way to create a flexible metamaterial absorber. Metamaterials are a type of resonator, with a resonance frequency that can be explained by its inductance and capacitance. So the team chose "snake-shaped" structures to enhance its inductance and shrink the unit size.

"In this case, think of the length of the 'snake bar' as the inductance. When we increase the length of the snake bar, the frequency of the resonance peak shifts to a lower frequency (longer wavelength) -- keeping the unit size small," Lee said. "By using a Teflon substrate as the dielectric layer, we can make it thin and elastic enough to be suitable as a flexible metamaterial."

As part of their research, the team specially designed two types of absorbers at 2 GHz and 400 MHz, focusing on keeping the unit size small and flexible, because most telecommunication devices -- including mobile phones -- operate within the 400 MHz to 2 GHz range. "Absorbers for GHz and MHz ranges can be used to suppress electromagnetic noise from everyday electronics," Lee noted.

Most surprising aspect of their work? Since the unit size of typical metamaterial absorbers is 1/3 to 1/5 of the wavelength of the incident electromagnetic wave, you'd expect the unit size to increase in the long-wavelength range. "Yet, our research showed that the unit size using the snake-shaped structure is nearly 1/12 at 2 GHz (single snake bar) and 1/30 at 400 MHz (5 snake bars) -- making it entirely suitable for real applications."

The next step for the researchers will be to try to create an even lower-frequency metamaterial absorber, with a range below 400 MHz, while also maintaining a small size and flexibility. "We're also exploring wideband and thinner metamaterial absorbers within the MHz range," Lee said.

####

About American Institute of Physics (AIP)
The American Institute of Physics (AIP) is a 501(c)(3) not-for-profit membership corporation created for the purpose of promoting the advancement and diffusion of the knowledge of physics and its application to human welfare. It is the mission of the Institute to serve the sciences of physics and astronomy by serving its member societies, by serving individual scientists, and by serving students and the general public.

As a "society of societies," AIP supports ten Member Societies and provides a spectrum of services and programs devoted to advancing the science and profession of physics. A pioneer in digital publishing, AIP is also one of the world's largest publishers of physics journals and produces the publications of more than 25 scientific and engineering societies through its New York-based publishing division.

For more information, please click here

Contacts:
Jason Bardi
001-301-209-3091
+1 240-535-4954

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Wireless/telecommunications/RF/Antennas/Microwaves

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

What a twist: Silicon nanoantennas turn light around: The theoretical results will allow scientists to design nanodevices with extraordinary features for use in optoelectronics November 21st, 2016

Physics

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Discoveries

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Materials/Metamaterials

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project