Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Flexible Metamaterial Absorbers

Abstract:
A research team in Korea has created flexible metamaterial absorbers designed to suppress electromagnetic radiation from mobile electronics.

Flexible Metamaterial Absorbers

College Park, MD | Posted on July 29th, 2014

Electromagnetic metamaterials boast special properties not found in nature and are rapidly emerging as a hot research topic for reasons extending far beyond "invisibility cloaks."

One other use for metamaterials is as "absorbers" of electromagnetic radiation. In the journal Applied Physics Letters, from AIP Publishing, a research team in Korea reports creating a flexible metamaterial absorber, based on tiny "snake-shaped" unit cells, with the ability to suppress electromagnetic radiation from mobile electronics and other electronic devices.

A negative index of refraction is one metamaterial "superpower" that enables applications such as a super lenses, cloaks, absorbers, and countless others, to operate at frequencies ranging from radio to visible.

By tapping into a negative index of refraction, metamaterial absorbers can be created that are both smaller in size and thickness than conventional absorbers. "The unit size of typical metamaterial absorbers, however, is still only 1/3 to 1/5 of the wavelength of the incident electromagnetic wave," explained YoungPak Lee, a physics professor at Hanyang University in Seoul, Korea.

The team's first attempt at designing a metamaterial absorber for long-wavelength MHz electromagnetic waves didn't turn out as planned-- the unit size actually increased, which limited its applications in suppressing the radiation from mobile devices and other electric equipment.

This turned out to be a good thing because as they addressed this problem, Lee and colleagues ended up discovering a way to create a flexible metamaterial absorber. Metamaterials are a type of resonator, with a resonance frequency that can be explained by its inductance and capacitance. So the team chose "snake-shaped" structures to enhance its inductance and shrink the unit size.

"In this case, think of the length of the 'snake bar' as the inductance. When we increase the length of the snake bar, the frequency of the resonance peak shifts to a lower frequency (longer wavelength) -- keeping the unit size small," Lee said. "By using a Teflon substrate as the dielectric layer, we can make it thin and elastic enough to be suitable as a flexible metamaterial."

As part of their research, the team specially designed two types of absorbers at 2 GHz and 400 MHz, focusing on keeping the unit size small and flexible, because most telecommunication devices -- including mobile phones -- operate within the 400 MHz to 2 GHz range. "Absorbers for GHz and MHz ranges can be used to suppress electromagnetic noise from everyday electronics," Lee noted.

Most surprising aspect of their work? Since the unit size of typical metamaterial absorbers is 1/3 to 1/5 of the wavelength of the incident electromagnetic wave, you'd expect the unit size to increase in the long-wavelength range. "Yet, our research showed that the unit size using the snake-shaped structure is nearly 1/12 at 2 GHz (single snake bar) and 1/30 at 400 MHz (5 snake bars) -- making it entirely suitable for real applications."

The next step for the researchers will be to try to create an even lower-frequency metamaterial absorber, with a range below 400 MHz, while also maintaining a small size and flexibility. "We're also exploring wideband and thinner metamaterial absorbers within the MHz range," Lee said.

####

About American Institute of Physics (AIP)
The American Institute of Physics (AIP) is a 501(c)(3) not-for-profit membership corporation created for the purpose of promoting the advancement and diffusion of the knowledge of physics and its application to human welfare. It is the mission of the Institute to serve the sciences of physics and astronomy by serving its member societies, by serving individual scientists, and by serving students and the general public.

As a "society of societies," AIP supports ten Member Societies and provides a spectrum of services and programs devoted to advancing the science and profession of physics. A pioneer in digital publishing, AIP is also one of the world's largest publishers of physics journals and produces the publications of more than 25 scientific and engineering societies through its New York-based publishing division.

For more information, please click here

Contacts:
Jason Bardi
001-301-209-3091
+1 240-535-4954

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Physics

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Wireless/telecommunications/RF/Antennas/Microwaves

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Discoveries

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Materials/Metamaterials

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Announcements

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project