Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New imaging agent provides better picture of the gut

Abstract:
A multi-institutional team of researchers has developed a new nanoscale agent for imaging the gastrointestinal (GI) tract. This safe, noninvasive method for assessing the function and properties of the GI tract in real time could lead to better diagnosis and treatment of gut diseases.

New imaging agent provides better picture of the gut

Madison, WI | Posted on July 25th, 2014

Illnesses such as small bowel bacterial overgrowth, irritable bowel syndrome and inflammatory bowel disease all occur in the intestine and can lead to serious side effects in patients with diseases such as diabetes and Parkinson's.

Until now, there hasn't been a good way to functionally image the intestine. However, in a paper published on July 6 in the journal Nature Nanotechnology, the researchers demonstrated that through a complementary approach using photoacoustic imaging and positron emission tomography (PET), they have created a multimodal functional imaging agent that could be used to perform noninvasive functional imaging of the intestine in real time.

Weibo Cai — an associate professor of radiology, medical physics and biomedical engineering at the University of Wisconsin-Madison — worked collaboratively with Jonathan Lovell, an assistant professor of biomedical engineering at the State University of New York at Buffalo, and Chulhong Kim, an assistant professor of creative information technology engineering at Pohang University of Science and Technology in South Korea. The team developed a family of nanoparticles that can provide good optical contrast for imaging — yet avoid absorption into the body and withstand the harsh conditions of the stomach and intestine.

Currently, patients drink a chalky liquid called barium and technicians view the intestine through X-rays and ultrasound. These methods, however, have many limitations, including accessibility and the possibility of radiation exposure.

The researchers' nanoparticles contain bright dyes. Patients still will drink a liquid, but it will contain the nanoparticles and allow an imaging technician to noninvasively view the illuminated intestine with photoacoustic imaging. "We can actually see the movement of the intestine in real time," Lovell says.

Cai and Lovell worked collaboratively to use two imaging techniques. Cai specializes in PET imaging — which uses radioisotope-based tracers and is used in health care settings for noninvasive, whole-body imaging. Lovell and Kim's expertise is in photoacoustic imaging, a technique that draws on ultrasound to generate high-definition images through light-based imaging.

While photoacoustic techniques yield high-definition images, PET imaging can penetrate deeper and image the entire body. Combining the two delivers the most information possible: high-definition images, images deep inside the body and a view of the intestine in relation to the entire body.

So far, the researchers have conducted successful test trials in mice and are hoping to move to human trials soon. "This is one of the first studies using both imaging techniques," Cai says. "The two imaging techniques work well together and get us all of the information that we need."

Both Lovell and Cai are excited about what the new imaging agent might mean for patients. "We could potentially induce a paradigm shift that allows for much more routine examination of the intestine function," Lovell says. "That would really benefit overall health."

Cai hopes the imaging agent can be targeted to look for certain disease-related markers and be used in therapeutic applications in the near future. "It is everything I would hope for in an imaging agent, and it is safe since we use FDA-approved agents to make these nanoparticles. That is why I am so excited about this," he says. "These are the promising first steps."

###

Grants from the National Institutes of Health, the Department of Defense and the Korean Ministry of Science funded the research. Additional authors on the paper include Yumiao Zhang, Mansik Jeon, Laurie J. Rich, Hao Hong, Jumin Geng, Yin Zhang, Sixiang Shi, Todd E. Barnhart, Paschalis Alexandridis, Jan D. Huizinga and Mukund Seshadri.

####

For more information, please click here

Contacts:
Weibo Cai

608-262-1749

Jasmine Sola

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Imaging

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

The Zeiss Global Centre in the School of Engineering at the University of Portsmouth uses Deben µXCT stages to characterise the structural competence of biological structures June 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Discoveries

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Military

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project