Home > Press > Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis
Abstract:
Iranian researchers from Nanobiotechnology Department of the University of Tehran designed a nanosensor that has the highest reported value of sensitivity in the diagnosis of cancer.
The nanosensor enables diagnosis of cancer in its early stages through a fast, simple and cheap method.
The presence of DNA chains caused by cellular death in blood is a very good opportunity to detect them and to determine the changes in methylation to obtain early diagnosis of cancer.
According to Mehdi Dadmehr, one of the researchers, very low concentration of DNA in blood is one of the most important challenges for the detection of the changes, which requires a very sensitive detection system. Normal methods that are currently used all over the world are usually based on DNA proliferation after pretreatment, which results in the degradation of over 90% of DNA during the test.
In this research, the possibility to detect changes in methylation and even the percentage of methylation in more accurate manner has been provided by using a nanosystem based on fluorescent probe. The nanoysystem has very high sensitivity to the extent that it detects concentrations of DNA at about 0.3 femtomolar (3*10-16). This amount has so far been reported as the highest value of detection limit in comparison with all other methods being used across the world.
Iron oxide magnetic nanoparticles with gold coating have been used in the production of the nanosensor. Dadmehr explained the advantages of this research, and said, "In addition to enabling early diagnosis of cancer, the nanosensor facilitates target gene-therapy of the cancer by detecting the type of the methylized gene."
Results of the research have been published in Biosensors and Bioelectronics, vol. 60, issue 1, April 2014, pp. 35-44.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanomedicine
Study reveals new mode of triggering immune responses July 15th, 2022
UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022
Sensors
‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022
Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022
Discoveries
HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Announcements
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |