Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis

Abstract:
Iranian researchers from Nanobiotechnology Department of the University of Tehran designed a nanosensor that has the highest reported value of sensitivity in the diagnosis of cancer.

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis

Tehran, Iran | Posted on July 19th, 2014

The nanosensor enables diagnosis of cancer in its early stages through a fast, simple and cheap method.

The presence of DNA chains caused by cellular death in blood is a very good opportunity to detect them and to determine the changes in methylation to obtain early diagnosis of cancer.

According to Mehdi Dadmehr, one of the researchers, very low concentration of DNA in blood is one of the most important challenges for the detection of the changes, which requires a very sensitive detection system. Normal methods that are currently used all over the world are usually based on DNA proliferation after pretreatment, which results in the degradation of over 90% of DNA during the test.

In this research, the possibility to detect changes in methylation and even the percentage of methylation in more accurate manner has been provided by using a nanosystem based on fluorescent probe. The nanoysystem has very high sensitivity to the extent that it detects concentrations of DNA at about 0.3 femtomolar (3*10-16). This amount has so far been reported as the highest value of detection limit in comparison with all other methods being used across the world.

Iron oxide magnetic nanoparticles with gold coating have been used in the production of the nanosensor. Dadmehr explained the advantages of this research, and said, "In addition to enabling early diagnosis of cancer, the nanosensor facilitates target gene-therapy of the cancer by detecting the type of the methylized gene."

Results of the research have been published in Biosensors and Bioelectronics, vol. 60, issue 1, April 2014, pp. 35-44.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Nanomedicine

Stretching the limits on conducting wires July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Albany College of Pharmacy and Health Sciences to Host One Week Symposium on Nanomedicine July 23rd, 2015

Sensors

American Chemical Society expands reach to include rapidly emerging area of sensor science July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Discoveries

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Announcements

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project