Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis

Abstract:
Iranian researchers from Nanobiotechnology Department of the University of Tehran designed a nanosensor that has the highest reported value of sensitivity in the diagnosis of cancer.

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis

Tehran, Iran | Posted on July 19th, 2014

The nanosensor enables diagnosis of cancer in its early stages through a fast, simple and cheap method.

The presence of DNA chains caused by cellular death in blood is a very good opportunity to detect them and to determine the changes in methylation to obtain early diagnosis of cancer.

According to Mehdi Dadmehr, one of the researchers, very low concentration of DNA in blood is one of the most important challenges for the detection of the changes, which requires a very sensitive detection system. Normal methods that are currently used all over the world are usually based on DNA proliferation after pretreatment, which results in the degradation of over 90% of DNA during the test.

In this research, the possibility to detect changes in methylation and even the percentage of methylation in more accurate manner has been provided by using a nanosystem based on fluorescent probe. The nanoysystem has very high sensitivity to the extent that it detects concentrations of DNA at about 0.3 femtomolar (3*10-16). This amount has so far been reported as the highest value of detection limit in comparison with all other methods being used across the world.

Iron oxide magnetic nanoparticles with gold coating have been used in the production of the nanosensor. Dadmehr explained the advantages of this research, and said, "In addition to enabling early diagnosis of cancer, the nanosensor facilitates target gene-therapy of the cancer by detecting the type of the methylized gene."

Results of the research have been published in Biosensors and Bioelectronics, vol. 60, issue 1, April 2014, pp. 35-44.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Nanomedicine

Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

Advanced nanoparticles provide new weapon to fight difficult cancers: Researchers use nanoparticles to deliver a bacterially derived compound that targets the STING pathway to suppress tumor growth and metastasis by disrupting blood vessels and stimulating immune response October 28th, 2022

Smart materials: metal cations-recognizable thermoresponsive polymers: Osaka Metropolitan University scientists developed a novel polymer, the thermoresponsiveness of which can easily be regulated by changing the type and mixing ratio of ionic species October 14th, 2022

Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022

Sensors

Spin photonics to move forward with new anapole probe November 4th, 2022

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers October 14th, 2022

Taking salt out of the water equation October 7th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project