Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery

Abstract:
Iranian researchers from Tarbiat Modarres University changed the liposome production process and increased the amount of genes entrapped in the structure of these nanocarriers.

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery

Tehran, Iran | Posted on July 17th, 2014

The non-virus nanocarriers have neutral structure and very high stability and they protect entrapped genes against degrading enzymes.

In this research, some changes were made in the synthesis of liposomes and nanocarriers were produced that can entrap DNA molecules with very high efficiency (98%) in their absolutely neutral structure. The results have so far been reported only for cationic liposomes that are highly toxic and can only be used in-vivo.

The nanostructure is very stable, to the extent that no release of DNA has been observed from it after six months. DNA is trapped in aqueous environment inside the liposome. Therefore, degrading enzymes are not able to degrade DNA molecule, and as a result, DNA has very high stability inside the structure.

Among other advantages of the designed nanocarrier, mention can be made of its very high ability in gene delivery to bacterium cell. Therefore, it can be used in the treatment of infections caused by bacteria, which are resistant to medications. The nanostructure can also be used as an appropriate carrier to delivery medications in the treatment of human diseases. The research team is currently carrying out studies on gene delivery to bacterium cells through this system.

Taking into account the obtained results, the researchers are hopeful that liposomes derived from cellular membrane will have important role in drug and gene delivery in the near future; therefore, they will take the place of toxic cationic carriers that are currently used.

Results of the research have been published in Molecular Biotechnology, vol. 55, issue 2, October 2013, pp. 120-130.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Discoveries

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Announcements

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Nanobiotechnology

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project