Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes

Atomic force microscopy (AFM) image of  a clover-shaped nanographenesCredit: Bruno Schuler, IBM – Zurich
Atomic force microscopy (AFM) image of a clover-shaped nanographenes

Credit: Bruno Schuler, IBM – Zurich

Abstract:
The prestigious journal Angewandte Chemie (link is external) has recently published a work by CiQUS researchers (University of Santiago de Compostela, Spain) in collaboration with IBM Research - Zurich (Switzerland), which describes an extremely simple method to obtain high quality nanographenes from easily available organic compounds.



NANOGRAPHENES: Molecular Assembly of Nanosized Graphenes

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes

Santiago, Spain | Posted on July 15th, 2014

Graphene is considered an unique material, which is leading to the emergence of a completely new technology. One of the biggest challenges in this new field is the development of methodologies for the preparation on this material with nanometric size and high quality: if the researchers get a perfect control over their size and geometry, they could explore new applications for high-performance electronic devices. The method discovered by CiQUS researchers allows to obtain well-defined nanographenes in one-pot from perylene, a very common organic compound.

This method is based on the reactivity of a group of molecules named arynes, which can act as "molecular glue" to paste graphene fragments together. The clover-shaped nanographenes obtained in this research were deposited on ultrathin insulating films, and imaged with atomic resolution by atomic force microscopy (AFM). The preparation of these materials with different size and shapes could be crucial to build graphene-based electronic circuits, molecular machinery and/or single molecule electronic devices.

The research work, led by Prof. Diego Peña, is a contribution of the research group COMMO, COMMO -belonging to CiQUS-, and includes the participation of Prof. Enrique Guitián, Prof. Dolores Pérez and the PhD student Sara Collazos. This COMMO group is pioneer on the synthesis of nanosized graphenes following bottom-up approaches through chemical methods in solution. The IBM Group (link is external) is specialist in the use of AFM with atomic resolution and in this work Dr. Leo Gross, Dr. Gerhard Meyer and PhD student Bruno Schuler were involved.

Both groups have already collaborated and published previous results in prestigious chemistry scientific journals as Science (2012), and currently they take part of the Large European Project PAMS (Planar Atomic and Molecular Scale Devices) (link is external), with a total budget over 9 million Euros. PAMS main objective is to develop electronic devices of nanometric-scale size, in order to get the extreme miniaturization of the equipment used in information technology and communication.

####

For more information, please click here

Contacts:
Fernando Casal
R&D Management
Center for Research in Biological Chemistry and Molecular Materials (CIQUS)
C/ Jenaro de la Fuente s/n
15782 University of Santiago de Compostela - Spain

Tel. (+34) 881 815 782
(+34) 600 942 443

Copyright © CIQUS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project