Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor

Credits: www.audio-luci-store.it
Credits: www.audio-luci-store.it

Abstract:
A study just published in Nature Communications and carried out by a collaboration of several Italian and international centres, including SISSA, used a technique based on applying short flashes of light to observe and analyse the features of a superconductor at high critical temperature, a material with major prospects for technological applications. In addition to providing an explanation for the peculiar behaviour of the material, the study also opens to the possibility of controlling its characteristics by means of laser pulses.

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor

Trieste, Italy | Posted on July 15th, 2014

uperconductors are futuristic materials that will hopefully have a broad range of technological applications at some time in the future (medical imaging, transport…). Today's use is limited by the extremely low temperatures (close to absolute zero) required for superconductivity to manifest. However, some families of these materials work at "relatively" high temperatures (about - 200° C), and it's on these that scientists are focusing their attention. Among them are copper-based superconductors, which have very unique characteristics. A study conducted by researchers of the International School for Advanced Studies (SISSA) of Trieste, the iLamp laboratory of the Catholic University of the Sacred Heart (Brescia), the T-Rex laboratory of the Elettra Synchrotron (Trieste), the Department of Physics of the University of Trieste and other international centres analysed a phenomenon typical of these materials and known to scientists as the pseudogap.

"When the material is heated to above the critical temperature, under which superconductivity manifests itself", explains Massimo Capone a SISSA researcher who took part in the study, "some of the features of the superconductive state are preserved, even though the main one is lost. This condition is called a pseudogap".

The team conducting the study induced a pseudogap state in the material, which it then subjected to very short pulses of laser light. "This treatment made the superconductor temporarily more ‘metallic', a state not normally manifested in this condition. We then interrupted the pulses and observed how the material behaved when it returned to its original state", continues Capone. "What we induced is in fact a transient state - lasting less than a picosecond - which we realised was related to electron-electron interactions. The light pulses remove these interactions, making the electrons freer to flow: hence the metallic state".

Capone, whose role in this (mainly experimental) study was to contribute to interpreting the data collected, explains that it's most probably the electron-electron interactions that are responsible for the pseudogap state.

"In addition to offering a theoretical framework for the phenomenon and providing new insight into this major family of superconductors, our study opens to an important possibility of controlling and modulating the characteristics of superconductors through the use of laser light".


Full bibliographic information

Photo-enhanced antinodal conductivity in the pseudogap state of high-Tc cuprates

F. Cilento, S. Dal Conte, G. Coslovich, S. Peli, N. Nembrini, S. Mor, F. Banfi, G. Ferrini, H. Eisaki, M. K. Chan, C. J. Dorow, M. J. Veit, M. Greven, D. van der Marel, R. Comin, A. Damascelli, L. Rettig, U. Bovensiepen, M. Capone, C. Giannetti et al.

Nature Communications 5, Article number: 4353 doi:10.1038/ncomms5353 Published 11 July 2014

####

For more information, please click here

Contacts:
Federica Sgorbissa

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project