Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes

New work by scientists at Lawrence Livermore National Laboratory and Rice University details the binding properties of lithium ions to various types of carbon that may be used for lithium-ion batteries. The “universal descriptor” they found has the potential to speed the development of materials for commercialization.Credit: Yuanyue Liu/Rice University
New work by scientists at Lawrence Livermore National Laboratory and Rice University details the binding properties of lithium ions to various types of carbon that may be used for lithium-ion batteries. The “universal descriptor” they found has the potential to speed the development of materials for commercialization.

Credit: Yuanyue Liu/Rice University

Abstract:
Lithium-ion batteries could benefit from a theoretical model created at Rice University and Lawrence Livermore National Laboratory that predicts how carbon components will perform as electrodes.

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes

Posted on July 14th, 2014

The model is based on intrinsic electronic characteristics of materials used as battery anodes. These include the material's quantum capacitance (the ability of the material to absorb charge) and the material's absolute Fermi level, which determines how many lithium ions may bond to the electrodes.

Subtle changes in the structure, chemistry and shape of an electrode can significantly alter how strongly lithium ions bond to it and affect a battery's capacity, voltage and energy density. The researchers found a universal correlation between these properties and a simple quantity they called the "states-filling work" that should allow scientists to fine-tune electrodes.

The research appears in the journal Physical Review Letters. Lawrence Livermore scientist Brandon Wood and Rice theoretical physicist Boris Yakobson led the study.

Fine-tuning becomes critically important as materials scientists test more 2-D materials like graphene and nanotubes for use as electrodes. The materials offer vast surface area for ions to bind to in a compact package, Yakobson said.

"This work emphasizes the role of quantum capacitance," he said. "Capacitance in a battery is usually defined by the configuration of your electrodes; people think about this as the distance between the plates.

"But if the plates become very close and the electrodes and electrolyte are tight, then quantum capacitance becomes the limiting parameter."

"The Fermi level of the electrode material is also important," said Rice graduate student Yuanyue Liu, the paper's lead author. "The lower it is, the stronger lithium will bind."

Liu and Lawrence Livermore staff scientist Brandon Wood were looking for a "descriptor," a characteristic that would capture the essential physics of interactions between lithium and a variety of carbon materials, including pristine, defective and strained graphene, planar carbon clusters, nanotubes, carbon edges and multilayer stacks.

"That descriptor turned out to be the ‘states-filling work' - the work required to fill previously unoccupied electronic states within the electrode," Liu said.

"Generally speaking, a descriptor is an intermediate property or parameter that doesn't give you what you really want to know, but correlates well with the material's final performance," Yakobson said.

"The descriptor connects to properties that may be quite complex," he said. "For instance, you can judge people's physical strength by how tall they are or by weight. That's easy to measure. It doesn't exactly tell you how strong the person will be, but it gives you some idea."

Based on the descriptor, the researchers were able to evaluate various carbon materials. Specifically, they found materials like defective or curved graphene were good candidates for anodes, as their energy profiles allowed more lithium ions to bind. Ultimately, their work suggested a set of binding guidelines for carbon anodes.

"These allow us to quickly evaluate material performance without doing electrochemical tests or expensive computations," Liu said.

"The fact that our descriptor predicts the performance of such a wide variety of materials is surprising," Wood said. "It means the underlying physics is really very similar, even if the structure, morphology, or chemistry differs from one candidate to the next. It's really a very simple and elegant finding that could accelerate design and discovery."

Yakobson noted the work is in line with the Materials Genome Initiative (MGI), which aims to double the speed and reduce the cost of developing advanced materials by providing these kinds of tools. Earlier this year, Rice's George R. Brown School of Engineering hosted a workshop on the MGI initiative, one of four held around the country.

Yakobson is Rice's Karl F. Hasselmann Professor of Materials Science and NanoEngineering, a professor of chemistry and a member of the Richard E. Smalley Institute for Nanoscale Science and Technology.

Lawrence Livermore National Laboratory and the Department of Energy supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice’s undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Yakobson Research Group:

Brandon Wood:

Lawrence Livermore National Laboratory:

Rice University Department of Materials Science and NanoEngineering:

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stretchy supercapacitors power wearable electronics August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic