Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanofluids Improve Performance of Automobile Radiator

Abstract:
Iranian chemical engineers from Ferdowsi University of Mashhad studied the performance of automobile radiators and realized that when nanofluids are used in the radiators, significant increase is observed in the amount of heat transfer in those systems.

Nanofluids Improve Performance of Automobile Radiator

Tehran, Iran | Posted on July 1st, 2014

Results of the research showed that nanofluids are good replacements for cooling fluid in radiators and thermal exchangers.

Materials with higher thermal properties are required to increase the performance of radiator. The use of nanofluids is one of the methods to increase heat transfer in radiators. In this research, cooling of car radiator has been investigated by using nanofluids. Results of the research indicated that the used nanofluid can increase heat transfer up to 50%. Reduction in size and weight of the radiators are among the achievements of this research.

In addition to reducing the production cost, better designation of cars are possible when the radiator becomes smaller in size. On the other hand, better cooling has positive effects on fuel consumption and the amount of fuel consumption decreases.

Nanofluids are produced by stable dispersing of nanoparticles in heat transfer fluids that are usually water or ethylene glycol. In this research, a system similar to car radiator cooling system has been designed and produced. Nanofluid (60 to 40 mixture of water to ethylene glycol) was used instead of radiator cooling fluid. Titanium oxide (TiO2) and copper oxide (CuO) were used as nanoparticles in this research.

Based on the results, more increase in heat transfer occurs when copper oxide nanoparticles are used in comparison with titania nanoparticles.

Results of the research have been published in Journal of Dispersion Science and Technology, vol. 35, issue 5, May 2014, pp. 677-682.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Discoveries

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

ACS Biomaterials Science & Engineering™: Brand-new journal names editor July 29th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Automotive/Transportation

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE