Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists Develop Force Sensor from Carbon Nanotubes

Abstract:
A group of researchers from Russia, Belarus and Spain, including MIPT professor Yury Lozovik, have developed a microscopic force sensor based on carbon nanotubes. The device is described in an article published in the journal Computational Materials Science and is also available as a preprint.

Scientists Develop Force Sensor from Carbon Nanotubes

Moscow, Russia | Posted on June 30th, 2014


The scientists proposed using two nanotubes, one of which is a long cylinder with double walls one atom thick. These tubes are placed so that their open ends are opposite to each other. Voltage is then applied to them, and a current of about 10nAflows through the circuit.

Carbon tube walls are good conductors, and along the gap between the ends of the nanotubes the current flows thanks to the tunnel effect, which is a quantum phenomenon where electrons pass through a barrier that is considered insurmountable in classical mechanics.

This current is called tunneling current and is widely used in practice. There are, for example, tunnel diodes, wherein current flows through the potential barrier of the p-n junction.

Another example is a scanning tunneling microscope (STM), in which the surface of a sample is scanned with a very sharp needle under voltage. The needle slides along the surface, and the magnitude of the current flowing through it shows the distance to the sample with such accuracy that the STM can detect protrusions one atom high.

The authors of the article used the relationship between the tunneling current and the distance between the ends of the nanotubes to determine the relative position of the carbon nanotubes and thus to find the magnitude of the external force exerted on them.
The new sensor allows the position of coaxial cylinders in two-layer nanotubes to be controlled quite accurately. As a result, it is possible to determine the stretch of an n-scale object, to which electrodes are attached. Calculations made by the researchers showed the possibility of recording forces of a few tenths of a nN(10-10newtons). To make it clearer, a single bacterium weighs about 10-14newtons on average, and a mosquito weighs a few dozen mcN (10-5 N).However, the device developed by the physicists may find application beyond micro scales.

A double-layered coaxial nanotube is akin to a microscopic cylinder with a sliding piston. Such a system has already been considered by a number of other researchers as a potential part for various types of nanomachines. Nanotubes have been proposed for the role of micromanipulators, or connecting "studs" for complex mechanisms, and they may even be used for data storage; the position of the inner "piston" may encode one bit of information or more.

Furthermore, calculations have shown that it is possible to create a combined device, where inside a two-layer carbon nanotube there will be magnetic fullerenes. When placed in a magnetic field, a power will emerge, which could be measured by changes in the magnitude of tunneling current. This will convert the force sensor into a magnetic field sensor.

MIPT's press office would like to thank Andrey Popov for his invaluable help in writing this article.

####

For more information, please click here

Contacts:
Alexandra O. Borissova

7-495-408-6445

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Sensors

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Announcements

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Research partnerships

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Characterization of X-ray flashes open new perspectives in X-ray science: Ultra-short X-ray pulses explore the nano world November 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE