Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists Develop Force Sensor from Carbon Nanotubes

Abstract:
A group of researchers from Russia, Belarus and Spain, including MIPT professor Yury Lozovik, have developed a microscopic force sensor based on carbon nanotubes. The device is described in an article published in the journal Computational Materials Science and is also available as a preprint.

Scientists Develop Force Sensor from Carbon Nanotubes

Moscow, Russia | Posted on June 30th, 2014


The scientists proposed using two nanotubes, one of which is a long cylinder with double walls one atom thick. These tubes are placed so that their open ends are opposite to each other. Voltage is then applied to them, and a current of about 10nAflows through the circuit.

Carbon tube walls are good conductors, and along the gap between the ends of the nanotubes the current flows thanks to the tunnel effect, which is a quantum phenomenon where electrons pass through a barrier that is considered insurmountable in classical mechanics.

This current is called tunneling current and is widely used in practice. There are, for example, tunnel diodes, wherein current flows through the potential barrier of the p-n junction.

Another example is a scanning tunneling microscope (STM), in which the surface of a sample is scanned with a very sharp needle under voltage. The needle slides along the surface, and the magnitude of the current flowing through it shows the distance to the sample with such accuracy that the STM can detect protrusions one atom high.

The authors of the article used the relationship between the tunneling current and the distance between the ends of the nanotubes to determine the relative position of the carbon nanotubes and thus to find the magnitude of the external force exerted on them.
The new sensor allows the position of coaxial cylinders in two-layer nanotubes to be controlled quite accurately. As a result, it is possible to determine the stretch of an n-scale object, to which electrodes are attached. Calculations made by the researchers showed the possibility of recording forces of a few tenths of a nN(10-10newtons). To make it clearer, a single bacterium weighs about 10-14newtons on average, and a mosquito weighs a few dozen mcN (10-5 N).However, the device developed by the physicists may find application beyond micro scales.

A double-layered coaxial nanotube is akin to a microscopic cylinder with a sliding piston. Such a system has already been considered by a number of other researchers as a potential part for various types of nanomachines. Nanotubes have been proposed for the role of micromanipulators, or connecting "studs" for complex mechanisms, and they may even be used for data storage; the position of the inner "piston" may encode one bit of information or more.

Furthermore, calculations have shown that it is possible to create a combined device, where inside a two-layer carbon nanotube there will be magnetic fullerenes. When placed in a magnetic field, a power will emerge, which could be measured by changes in the magnitude of tunneling current. This will convert the force sensor into a magnetic field sensor.

MIPT's press office would like to thank Andrey Popov for his invaluable help in writing this article.

####

For more information, please click here

Contacts:
Alexandra O. Borissova

7-495-408-6445

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Sensors

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold forged with atomic precision September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Research partnerships

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic