Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Interlayer distance in graphite oxide gradually changes when water is added

Scanning force microscopy images, which show the relief of a graphene oxide flake. Bright areas are "hills" and dark areas are "valleys".  The left image was recorded at low relative humidity, one can say on a dry surface. The right image was recorded at high relative humidity, 65 percent.  One can see that new bright spots appear in some regions, which are due to the insertion of water.  The overall relief becomes less flat and more curved with more hills while valleys are preserved.
Scanning force microscopy images, which show the relief of a graphene oxide flake. Bright areas are "hills" and dark areas are "valleys". The left image was recorded at low relative humidity, one can say on a dry surface. The right image was recorded at high relative humidity, 65 percent. One can see that new bright spots appear in some regions, which are due to the insertion of water. The overall relief becomes less flat and more curved with more hills while valleys are preserved.

Abstract:
Physicists from Umeň University and Humboldt University in Berlin have solved a mystery that has puzzled scientists for half a century. They show with the help of powerful microscopes that the distance between graphite oxide layers gradually increases when water molecules are added. That is because the surface of graphite oxide is not flat, but varies in thickness with "hills" and "valleys" of nanosize. The new findings are published in the scientific journal Nano Letters.

Interlayer distance in graphite oxide gradually changes when water is added

Umea, Sweden | Posted on June 30th, 2014

"Now we can better understand the mechanisms of solvent insertion between layers of graphene oxide. It increases our knowledge of the ultrathin membranes and helps to design new types of membranes with permeation properties that can be finely adjusted by adding water and various other solvents,"says Alexandr Talyzin, researcher at the Department of Physics at Umeň University.

Graphite oxide is a unique and useful material, with many unusual properties. It can easily dissolve in water and form single atomic layers of graphene oxide sheets. The super thin flakes can then be arranged in a multilayer membrane with the unique ability to incorporate various solvents between the layers.

Already in the 60's such membranes were tested for seawater desalination and filtration applications. Recent studies show that the graphene oxide membranes may also be used to separate liquids and gases. Thin graphene oxide films can separate binary gas mixtures with fairly high efficiency. Even more interesting, the separation characteristics can be finely adjusted by water vapors.

Water molecules easily penetrate between the graphene oxide layers and it has long been known that the distance between the graphene oxide layers depends on the humidity. By simple logic, it means that the distance between the layers is to change in steps corresponding to the size of the water molecules. What has puzzled scientists for half a century is that the distance between the layers, as measured by diffraction methods, is gradually changing proportionally to the humidity change.

"Obviously, we cannot put in quarter molecules or half molecules. So why do we see continuous changes in the distance between the graphene oxide layers? We decided to study the layers of graphene oxide with modern microscopic methods, which strangely enough had not been done before", says Alexandr Talyzin.

So far the puzzle had been explained with a phenomenon called interstratification - a random stacking of layers with different number of water layers - and what is measured by diffraction data has been an average value related to the different proportions between the number of layers having different degrees of hydration.

The new study conducted by physicists from Humboldt University in Berlin together with Alexandr Talyzin┤s research team at Umeň University provides a different explanation. With microscopy of very high resolution, Scanning Force Microscopy, the researchers could measure the absolute distance between two graphene oxide layer and record changes as a function of humidity.

"The distance between two single graphene oxide layers obviously changed gradually again, but the explanation for this effect was revealed as nanometer-sized areas that were not equally filled with water. Of course, the effect of interstratification was excluded in our experiments because we only studied two layers and a single distance", says Alexandr Talyzin.

The results indicate that picturing graphene oxide as a flat plane is not correct. It is, rather, a relatively thick layer (about two times the thickness of graphene) with a variation of thickness, including "hills" and "valleys" of different size. Adding water molecules increases the thickness of this layer locally, but not necessary by the exact size of the water molecule if some "valleys" are filled first. When all available water adsorption sites ("valleys") are filled, an additional water layer is added at once. This happens at very high humidity or in liquid water.

About graphite oxide:

Graphene is a thin film of carbon, only one atom thick. It is a unique adsorptive material because of its extremely large surface. One gram graphene has a surface comparable to a football field. This space would be ideal for adsorption of gases and liquids in applications for gas storage, extraction of impurities from water, and so on, unless the graphene would be hydrophobic, meaning that its surface repels water. Oxidation of graphene results in notable changes of its properties. Graphene oxide is hydrophilic and attracted to water, and is even highly soluble in water. A material consisting of many graphene oxide layers is called graphite oxide. One possible application in the environmental area is purifying contaminated soil and seawater. Graphene oxide functions as a filter that separates all other components in water, except the water molecules.

####

For more information, please click here

Contacts:
Alexandr Talyzin

46-907-866-320

Copyright © Umea University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original article:

Related News Press

Physics

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Graphene

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Angstron Materials Appoints VP for Business Development And Engineering June 27th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Breakthrough graphene production could trigger revolution in artificial skin development June 25th, 2015

Discoveries

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Water

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Dais Analytic Unveils New Version of Aqualyte Membrane Technology: Updates to the Basis of the Company's Industry-Changing Nanotechnology Designed to Strengthen Position in Global Air, Energy, and Water Markets June 26th, 2015

Bacteria Cellulose, Natural Polymers with Applications in Various Industries Synthesized in Iran June 22nd, 2015

Ceramic Nanomembrane, New Material for Dehydration of Natural Gas June 7th, 2015

Research partnerships

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project