Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Interlayer distance in graphite oxide gradually changes when water is added

Scanning force microscopy images, which show the relief of a graphene oxide flake. Bright areas are "hills" and dark areas are "valleys".  The left image was recorded at low relative humidity, one can say on a dry surface. The right image was recorded at high relative humidity, 65 percent.  One can see that new bright spots appear in some regions, which are due to the insertion of water.  The overall relief becomes less flat and more curved with more hills while valleys are preserved.
Scanning force microscopy images, which show the relief of a graphene oxide flake. Bright areas are "hills" and dark areas are "valleys". The left image was recorded at low relative humidity, one can say on a dry surface. The right image was recorded at high relative humidity, 65 percent. One can see that new bright spots appear in some regions, which are due to the insertion of water. The overall relief becomes less flat and more curved with more hills while valleys are preserved.

Abstract:
Physicists from Umeň University and Humboldt University in Berlin have solved a mystery that has puzzled scientists for half a century. They show with the help of powerful microscopes that the distance between graphite oxide layers gradually increases when water molecules are added. That is because the surface of graphite oxide is not flat, but varies in thickness with "hills" and "valleys" of nanosize. The new findings are published in the scientific journal Nano Letters.

Interlayer distance in graphite oxide gradually changes when water is added

Umea, Sweden | Posted on June 30th, 2014

"Now we can better understand the mechanisms of solvent insertion between layers of graphene oxide. It increases our knowledge of the ultrathin membranes and helps to design new types of membranes with permeation properties that can be finely adjusted by adding water and various other solvents,"says Alexandr Talyzin, researcher at the Department of Physics at Umeň University.

Graphite oxide is a unique and useful material, with many unusual properties. It can easily dissolve in water and form single atomic layers of graphene oxide sheets. The super thin flakes can then be arranged in a multilayer membrane with the unique ability to incorporate various solvents between the layers.

Already in the 60's such membranes were tested for seawater desalination and filtration applications. Recent studies show that the graphene oxide membranes may also be used to separate liquids and gases. Thin graphene oxide films can separate binary gas mixtures with fairly high efficiency. Even more interesting, the separation characteristics can be finely adjusted by water vapors.

Water molecules easily penetrate between the graphene oxide layers and it has long been known that the distance between the graphene oxide layers depends on the humidity. By simple logic, it means that the distance between the layers is to change in steps corresponding to the size of the water molecules. What has puzzled scientists for half a century is that the distance between the layers, as measured by diffraction methods, is gradually changing proportionally to the humidity change.

"Obviously, we cannot put in quarter molecules or half molecules. So why do we see continuous changes in the distance between the graphene oxide layers? We decided to study the layers of graphene oxide with modern microscopic methods, which strangely enough had not been done before", says Alexandr Talyzin.

So far the puzzle had been explained with a phenomenon called interstratification - a random stacking of layers with different number of water layers - and what is measured by diffraction data has been an average value related to the different proportions between the number of layers having different degrees of hydration.

The new study conducted by physicists from Humboldt University in Berlin together with Alexandr Talyzin┤s research team at Umeň University provides a different explanation. With microscopy of very high resolution, Scanning Force Microscopy, the researchers could measure the absolute distance between two graphene oxide layer and record changes as a function of humidity.

"The distance between two single graphene oxide layers obviously changed gradually again, but the explanation for this effect was revealed as nanometer-sized areas that were not equally filled with water. Of course, the effect of interstratification was excluded in our experiments because we only studied two layers and a single distance", says Alexandr Talyzin.

The results indicate that picturing graphene oxide as a flat plane is not correct. It is, rather, a relatively thick layer (about two times the thickness of graphene) with a variation of thickness, including "hills" and "valleys" of different size. Adding water molecules increases the thickness of this layer locally, but not necessary by the exact size of the water molecule if some "valleys" are filled first. When all available water adsorption sites ("valleys") are filled, an additional water layer is added at once. This happens at very high humidity or in liquid water.

About graphite oxide:

Graphene is a thin film of carbon, only one atom thick. It is a unique adsorptive material because of its extremely large surface. One gram graphene has a surface comparable to a football field. This space would be ideal for adsorption of gases and liquids in applications for gas storage, extraction of impurities from water, and so on, unless the graphene would be hydrophobic, meaning that its surface repels water. Oxidation of graphene results in notable changes of its properties. Graphene oxide is hydrophilic and attracted to water, and is even highly soluble in water. A material consisting of many graphene oxide layers is called graphite oxide. One possible application in the environmental area is purifying contaminated soil and seawater. Graphene oxide functions as a filter that separates all other components in water, except the water molecules.

####

For more information, please click here

Contacts:
Alexandr Talyzin

46-907-866-320

Copyright © Umea University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original article:

Related News Press

News and information

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Graphene

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Physics

Breakthrough in OLED technology March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and JŘlich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Announcements

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and JŘlich use microwaves to read out information from smallest storage devices March 4th, 2015

Water

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Nanocomposite Membranes Used in Iran for Water Desalination, Sweetening February 16th, 2015

Research partnerships

New research could lead to more efficient electrical energy storage March 4th, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE