Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Artificial enzyme mimics the natural detoxification mechanism in liver cells: Molybdenum oxide particles can assume the function of the endogenous enzyme sulfite oxidase / Basis for new therapeutic application

photo: Tremel research group
Mode of action of molybdenum oxide nanoparticles: (a) treatment of sulfite oxidase deficient liver cells; (b) mitochondria are directly targeted, nanoparticles accumulate in proximity to the membrane; (c) sulfite is oxidized to cellular innocuous sulfate.
photo: Tremel research group

Mode of action of molybdenum oxide nanoparticles: (a) treatment of sulfite oxidase deficient liver cells; (b) mitochondria are directly targeted, nanoparticles accumulate in proximity to the membrane; (c) sulfite is oxidized to cellular innocuous sulfate.

Abstract:
Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have discovered that molybdenum trioxide nanoparticles oxidize sulfite to sulfate in liver cells in analogy to the enzyme sulfite oxidase. The functionalized Molybdenum trioxide nanoparticles can cross the cellular membrane and accumulate at the mitochondria, where they can recover the activity of sulfite oxidase.

Artificial enzyme mimics the natural detoxification mechanism in liver cells: Molybdenum oxide particles can assume the function of the endogenous enzyme sulfite oxidase / Basis for new therapeutic application

Mainz, Germany | Posted on June 30th, 2014

Sulfite oxidase is a molybdenum containing enzyme located in the mitochondria of liver and kidney cells, which catalyzes the oxidation of sulfite to sulfate during the protein and lipid metabolism and therefore plays an important role in cellular detoxification processes. A lack of functional sulfite oxidase is a rare but fatal genetic disease causing neurological disorders, mental retardation, physical deformities as well as degradation of the brain, which finally leads to premature death. Various dietary or drug treatments for a sulfite oxidase deficiency have been tried with moderate success.

It was the fact that molybdenum oxide is incorporated in the enzymes active site that provided the inspiration for the approach now taken by the team of scientists working under the lead of Professor Wolfgang Tremel of the JGU Institute of Inorganic Chemistry and Analytical Chemistry as well as Dr. Dennis Strand and Professor Susanne Strand of the Department of Internal Medicine of the Mainz University Medical Center. The researchers hope that this study may lay the basis for a therapeutic application of molybdenum trioxide nanoparticles and therefore new possibilities to treat sulfite oxidase deficiency.

Lowered sulfite oxidase levels can cause health problems even for otherwise healthy persons. In addition, sulfites are used as preservatives in food, e.g., in red wine, grape juice, or pickles in a jar. People having low levels of the sulfite oxidase react with symptoms like fatigue, asthma, drop in blood sugar, or headache.

With their study the Mainz scientists enter scientifically uncharted territory, because so far there are just a few studies of enzymatically active nanoparticles. "It is indeed astonishing, that simple inorganic nanoparticles can mimic an enzymatic activity," said Ruben Ragg, first author of this study. In a previous work Professor Wolfgang Tremel and his team had shown that vanadium oxide nanowires contain an enzymatically induced antifouling activity that efficiently prevents ships from being infested by marine microorganisms. "It is a long-standing goal of chemistry to synthesize artificial enzymes that imitate the essential and general principles of natural enzymes," added Tremel. There is growing evidence that nanoparticles can act as enzyme mimics. Some nanomaterials were reported to exhibit enzyme-like activities, but the hallmark of enzyme chemistry would be to catalyze transformations in cells in the presence of other competing reactions. This is difficult to achieve, as it requires compatibility with other cellular reactions operating under similar conditions and rates. Therefore, artificial enzymes are not only useful for an understanding of the reaction mechanism of native enzymes but also for future applications as therapeutic agents.

At the same time, the use of molybdenum nanoparticles would have several benefits. "Molybdenum oxide particles are considerably cheaper and also more stable than genetically produced enzymes," added Dr. Filipe Natalio, cooperation partner from Martin Luther University of Halle-Wittenberg. Natalio is designing new materials that can mimic complex structures found in nature by bringing together a wide range expertise from material sciences to biology and chemistry. The next steps of the project will be to test if the enzyme activity of the nanoparticles can be retained in living organisms.

The research teams were supported by an interdisciplinary grant from the JGU Center for Natural Sciences and Medicine (NMFZ) and the Max Planck Graduate Center (MPGC).

####

For more information, please click here

Contacts:
Professor Wolfgang Tremel

49-613-139-25135

Mainz University Medical Center
Professor Dr. Susanne Strand
Department of Internal Medicine
D 55131 Mainz
Tel +49 6131 17-9782

Copyright © Johannes Gutenberg Universitaet Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Synthetic Biology

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

Nanomedicine

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Discoveries

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Announcements

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanobiotechnology

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project