Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Measuring the mass of 'massless' electrons: Taming graphene, Harvard-led researchers successfully measure collective mass of ‘massless’ electrons in motion

A schematic of the experimental setup. Ham and Yoon measured the change in phase of a microwave signal sent through the graphene.Image courtesy of Hosang Yoon, Harvard SEAS.
A schematic of the experimental setup. Ham and Yoon measured the change in phase of a microwave signal sent through the graphene.

Image courtesy of Hosang Yoon, Harvard SEAS.

Abstract:
Individual electrons in graphene are massless, but when they move together, it's a different story.

Graphene, a one-atom-thick carbon sheet, has taken the world of physics by storm—in part, because its electrons behave as massless particles. Yet these electrons seem to have dual personalities. Phenomena observed in the field of graphene plasmonics suggest that when the electrons move collectively, they must exhibit mass.

Measuring the mass of 'massless' electrons: Taming graphene, Harvard-led researchers successfully measure collective mass of ‘massless’ electrons in motion

Cambridge, MA | Posted on June 24th, 2014

After two years of effort, researchers led by Donhee Ham, Gordon McKay Professor of Electrical Engineering and Applied Physics at the Harvard School of Engineering and Applied Sciences (SEAS), and his student Hosang Yoon, Ph.D.'14, have successfully measured the collective mass of ‘massless' electrons in motion in graphene.

By shedding light on the fundamental kinetic properties of electrons in graphene, this research may also provide a basis for the creation of miniaturized circuits with tiny, graphene-based components.

The results of Ham and Yoon's complex measurements, performed in collaboration with other experts at Columbia University and the National Institute for Materials Science in Japan, have been published online in Nature Nanotechnology.

"Graphene is a unique material because, effectively, individual graphene electrons act as though they have no mass. What that means is that the individual electrons always move at a constant velocity," explains Ham. "But suppose we apply a force, like an electric field. The velocity of the individual electrons still remains constant, but collectively, they accelerate and their total energy increases—just like entities with mass. It's quite interesting."

Without this mass, the field of graphene plasmonics cannot work, so Ham's team knew it had to be there—but until now, no one had accurately measured it.

"One of the greatest contributions of this work is that it is actually an extremely difficult measurement," says Ham.

As Newton's second law dictates, a force applied to a mass must generate acceleration. Yoon and Ham knew that if they could apply an electric field to a graphene sample and measure the electrons' resulting collective acceleration, they could then use that data to calculate the collective mass.

But the graphene samples used in past experiments were replete with imperfections and impurities—places where a carbon atom was missing or had been replaced by something different. In those past experiments, electrons would accelerate but very quickly scatter as they collided with the impurities and imperfections.

"The scattering time was so short in those studies that you could never see the acceleration directly," says Ham.

To overcome the scattering problem, several smart changes were necessary.

First, Ham and Yoon joined forces with Philip Kim, a physics professor at Columbia who will join the Harvard faculty on July 1 as Professor of Physics and of Applied Physics. A Harvard graduate (Ph.D. '99), Kim is well known for his pioneering fundamental studies of graphene and his expertise in fabricating high-quality graphene samples. The team was now able to reduce the number of impurities and imperfections by sandwiching the graphene between layers of hexagonal boron nitride, an insulating material with a similar atomic structure. By also collaborating with James Hone, a professor of mechanical engineering at Columbia, they designed a better way to connect electrical signal lines to the sandwiched graphene. And Yoon and Ham applied an electric field at a microwave frequency, which allows for the direct measurement of the electrons' collective acceleration in the form of a phase delay in the current.

"By doing all this, we translated the situation from completely impossible to being at the verge of either seeing the acceleration or not," says Ham. "However, the difficulty was still very daunting, and Hosang [Yoon] made it all possible by performing very fine and subtle microwave engineering and measurements—a formidable piece of experimentation."

"To me, it was a victorious moment that finally justified a long-term effort, going through multiple trials and errors," says Yoon, lead author of the paper in Nature Nanotechnology. "Until then, I wasn't even sure if the experiment would really be possible, so it was like a ‘through darkness comes light' moment."

Collective mass is a key aspect of explaining plasmonic behaviors in graphene. By demonstrating that graphene electrons exhibit a collective mass and by measuring its value accurately, Yoon says, "We think it will help people to understand and design more sophisticated plasmonic devices with graphene."

The team's experiments also revealed that, in graphene, kinetic inductance (the electrical manifestation of collective mass) is several orders of magnitude larger than another, far more commonly exploited property called magnetic inductance. This is important in the push toward smaller and smaller electronic circuitry—the main theme of modern integrated circuits—because it means the same level of inductance can be achieved in a far smaller area. Furthermore, Ham and Yoon say that this miniature graphene-based kinetic inductor could enable the creation of a solid-state voltage-controlled inductor, complementary to the widely used voltage-controlled capacitor. It could be used to substantially increase the frequency tuning range of electronic circuits, which is an important function in communication applications.

For now, the challenge remains to improve the quality of graphene samples so that the detrimental effects of electron scattering can be further reduced.

##

Hosang Yoon is lead author of the paper in Nature Nanotechnology, with corresponding authors Donhee Ham at Harvard SEAS and Philip Kim at Columbia. Additional coauthors include Columbia professor James Hone, Columbia graduate students Carlos Forsythe and Lei Wang; Nikolaos Tombros, a former member of the Kim lab at Columbia, now at the University of Groningen in the Netherlands; Kenji Watanabe, chief researchers in optoelectronic materials at the National Institute for Materials Science (NIMS) in Japan; and Takashi Taniguchi, group leader in the Ultra-high Pressure Processes Group at NIMS.

This research was supported by the Air Force Office of Scientific Research, the Office of Naval Research, the National Science Foundation, and the Samsung Advanced Institute of Technology and its Global Research Opportunity program. Additional support was provided by the Nano Material Technology Development Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning; the Columbia Optics and Quantum Electronics IGERT; and the Netherlands Organisation for Scientific Research.

####

For more information, please click here

Contacts:
Caroline Perry

617-496-1351

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-supercapacitors for electric cars July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Graphene

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Physics

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Wireless/telecommunications/RF/Antennas

New quantum mechanism to trigger the emission of tunable light at terahertz frequencies June 18th, 2014

Ultra-thin wires for quantum computing: Carefully fabricating nanofibers by heating and pulling may make for highly-efficient, optics-based, low-power atom traps June 17th, 2014

SABIC collaborates with Cima NanoTech on breakthrough technology: industry-first transparent conductive polycarbonate film May 29th, 2014

Kinetic Technologies Selects Dongbu HiTek to Manufacture LED Driver ICs Destined for Smart Phone Applications: Korean foundry has begun volume production using its groundbreaking low-voltage BCDMOS process at the 0.18-micron node May 27th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Discoveries

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Announcements

Nano-supercapacitors for electric cars July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Military

New imaging agent provides better picture of the gut July 25th, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Research partnerships

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE