Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Glucose monitoring for diabetes made easy with a blood-less method

Abstract:
Treating Diabetes - a major scourge of humanity bothering millions of people - requires a constant monitoring of the human blood for glucose concentrations. While current schemes employ electrochemical methods, they require extraction of blood samples. By using glucose-sensitive dyes and a nano-plasmonic interferometer, a research team from Brown University has shown how to achieve much higher sensitivities in real-time measurements while using only saliva instead of blood.

Glucose monitoring for diabetes made easy with a blood-less method

Berlin, Germany | Posted on June 18th, 2014

In their article titled "A plasmonic cuvette": dye chemistry coupled to plasmonic interferometry for glucose sensing in the journal Nanophotonics the research team led by Domenico Pacifici describes how a suitable mixture of enzymes can be employed to selectively generate a red fluorescent molecule. These can then be selectively optically detected in a complex environment full of a plethora of other substances such as human saliva. Tiny volumes of the compound are investigated by means of a nano-structured surface of silver and aluminum oxide. As a plasmonic interferometer this structure facilitates the interactions of light with the mixture under investigation. By measuring the absorption of light of a specific wavelength the concentration of glucose can be inferred.

Non-invasively studying saliva is made possible due to the high sensitivity of this method. Although a strict dependence between glucose concentrations in blood and saliva exist, the latter is smaller by a factor of hundred. Additionally only a tiny volume of material - around the a quarter of the volume of a water droplet - is required to achieve this.

Nanophotonics - Co-published by De Gruyter and ScienceWise Publishing, Nanophotonics (ISSN 2192-8614) covers recent international research results, specific developments in the field and novel applications. Every issue contains a balanced combination of invited review articles, regular articles, letters and opinionated reports. Nanophotonics focuses on the interaction of photons with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue and DNA, delivering the latest developments to physicists, engineers, and material scientists.

Nanophotonics
6 Issues per year
In co-publication with Science Wise Publishing
ISSN 2192-8614

####

About De Gruyter
International Publishing House

For more information, please click here

Contacts:
Ulrike Lippe

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Chemistry

Chemical cages: New technique advances synthetic biology February 10th, 2016

Graphene decharging and molecular shielding February 8th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Photonics/Optics/Lasers

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Scientists create laser-activated superconductor February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic