Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Tricking the Uncertainty Principle: Researchers at Caltech find a way to sidestep the quantum "noise" that limits the precision of ultrasensitive position measurements

The tiny aluminum device—only 40 microns long and 100 nanometers thick—in which Caltech researchers observed the quantum noise from microwaves.
Credit: Chan Lei and Keith Schwab/Caltech
The tiny aluminum device—only 40 microns long and 100 nanometers thick—in which Caltech researchers observed the quantum noise from microwaves.

Credit: Chan Lei and Keith Schwab/Caltech

Abstract:
Caltech researchers have found a way to make measurements that go beyond the limits imposed by quantum physics.

Tricking the Uncertainty Principle: Researchers at Caltech find a way to sidestep the quantum "noise" that limits the precision of ultrasensitive position measurements

Pasadena, CA | Posted on May 15th, 2014

Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement.

The findings were published online in the May 15 issue of Science Express.

"If you want to know where something is, you have to scatter something off of it," explains Professor of Applied Physics Keith Schwab, who led the study. "For example, if you shine light at an object, the photons that scatter off provide information about the object. But the photons don't all hit and scatter at the same time, and the random pattern of scattering creates quantum fluctuations"—that is, noise. "If you shine more light, you have increased sensitivity, but you also have more noise. Here we were looking for a way to beat the uncertainty principle—to increase sensitivity but not noise."

Schwab and his colleagues began by developing a way to actually detect the noise produced during the scattering of microwaves—electromagnetic radiation that has a wavelength longer than that of visible light. To do this, they delivered microwaves of a specific frequency to a superconducting electronic circuit, or resonator, that vibrates at 5 gigahertz—or 5 billion times per second. The electronic circuit was then coupled to a mechanical device formed of two metal plates that vibrate at around 4 megahertz—or 4 million times per second. The researchers observed that the quantum noise of the microwave field, due to the impact of individual photons, made the mechanical device shake randomly with an amplitude of 10-15 meters, about the diameter of a proton.

"Our mechanical device is a tiny square of aluminum—only 40 microns long, or about the diameter of a hair. We think of quantum mechanics as a good description for the behaviors of atoms and electrons and protons and all of that, but normally you don't think of these sorts of quantum effects manifesting themselves on somewhat macroscopic objects," Schwab says. "This is a physical manifestation of the uncertainty principle, seen in single photons impacting a somewhat macroscopic thing."

Once the researchers had a reliable mechanism for detecting the forces generated by the quantum fluctuations of microwaves on a macroscopic object, they could modify their electronic resonator, mechanical device, and mathematical approach to exclude the noise of the position and motion of the vibrating metal plates from their measurement.

The experiment shows that a) the noise is present and can be picked up by a detector, and b) it can be pushed to someplace that won't affect the measurement. "It's a way of tricking the uncertainty principle so that you can dial up the sensitivity of a detector without increasing the noise," Schwab says.

Although this experiment is mostly a fundamental exploration of the quantum nature of microwaves in mechanical devices, Schwab says that this line of research could one day lead to the observation of quantum mechanical effects in much larger mechanical structures. And that, he notes, could allow the demonstration of strange quantum mechanical properties like superposition and entanglement in large objects—for example, allowing a macroscopic object to exist in two places at once.

"Subatomic particles act in quantum ways—they have a wave-like nature—and so can atoms, and so can whole molecules since they're collections of atoms," Schwab says. "So the question then is: Can you make bigger and bigger objects behave in these weird wave-like ways? Why not? Right now we're just trying to figure out where the boundary of quantum physics is, but you never know."

This work was published in an article titled "Mechanically Detecting and Avoiding the Quantum Fluctuations of a Microwave Field." Other Caltech coauthors include senior researcher Junho Suh; graduate students Aaron J. Weinstein, Chan U. Lei, and Emma E. Wollman; and Steven K. Steinke, visitor in applied physics and materials science. The work was funded by the Institute for Quantum Information and Matter, the Defense Advanced Research Projects Agency, and the National Science Foundation. The device was fabricated in Caltech's Kavli Nanoscience Institute, of which Schwab is a codirector.

Written by Jessica Stoller-Conrad

####

For more information, please click here

Contacts:
Brian Bell
(626) 395-5832

Copyright © California Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Physics

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Quantum physics -- hot and cold at the same time: Measurements at the Vienna University of Technology show that a cloud of quantum particles can have several temperatures at once; the experiment provides new insight into the behavior of large quantum systems April 9th, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Unraveling the origin of the pseudogap in a charge density wave compound April 8th, 2015

Discoveries

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Announcements

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Tools

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Combined effort for structural determination April 15th, 2015

The Casiraghi Group, located at the University of Manchester's NanoScience and Spectroscopy Laboratory, use Raman in the study of graphene April 14th, 2015

Quantum nanoscience

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

Quantum physics -- hot and cold at the same time: Measurements at the Vienna University of Technology show that a cloud of quantum particles can have several temperatures at once; the experiment provides new insight into the behavior of large quantum systems April 9th, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE