Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > UH researchers find definitive evidence of how zeolites grow: A breakthrough technique allowed them to track crystal growth in real time

This is a photograph of the high temperature liquid cell attached to the atomic force microscope (MFP-3D-SA, Asylum Research, Santa Barbara, CA). The cell is equipped with inlet/outlet ports for liquid injection and a heating element that regulates temperatures as high as 300 C.

Credit: University of Houston
This is a photograph of the high temperature liquid cell attached to the atomic force microscope (MFP-3D-SA, Asylum Research, Santa Barbara, CA). The cell is equipped with inlet/outlet ports for liquid injection and a heating element that regulates temperatures as high as 300 C.

Credit: University of Houston

Abstract:
Researchers have found the first definitive evidence of how silicalite-1 (MFI type) zeolites grow, showing that growth is a concerted process involving both the attachment of nanoparticles and the addition of molecules.

UH researchers find definitive evidence of how zeolites grow: A breakthrough technique allowed them to track crystal growth in real time

Houston, TX | Posted on May 15th, 2014

Both processes appear to happen simultaneously, said Jeffrey Rimer, an engineering professor at the University of Houston and lead author of a paper published Thursday in the journal Science.

He said a second component to the research could have even more lasting impact. He and researcher Alexandra I. Lupulescu used a new technique allowing them to view zeolite surface growth in real time, a breakthrough Rimer said can be applied to other types of materials, as well.

Typically, researchers examine zeolite growth by removing crystals from the natural synthesis environment and analyzing changes in their physical properties, said Rimer, Ernest J. and Barbara M. Henley Assistant Professor of Chemical and Biomolecular Engineering at UH. That has made understanding the fundamental mechanism of zeolite growth more challenging.

Zeolites occur naturally but can also be manufactured. This research involved silicalite-1, a synthetic, aluminum-free zeolite that has served as a prototype in literature for studying zeolite growth.

For more than two decades, researchers have theorized that nanoparticles, which are known to be present in zeolite growth solutions, played a role in the growth, but there was no direct evidence. And while most crystals grow through classical means - the addition of atoms or molecules to the crystal - the presence and gradual consumption of nanoparticles suggested a nonclassical pathway for zeolite crystallization.

Rimer and Lupulescu found that both classical and nonclassical growth models were at work.

"We have shown that a complex set of dynamics takes place," Rimer said. "In doing so, we have revealed that there are multiple pathways in the growth mechanism, which solves a problem that has been debated for nearly 25 years."

It solves a mystery in the world of crystal engineering, but how they did it may have a more lasting impact. Rimer and Lupulescu, who did the project as part of her dissertation, earning her Ph.D. in chemical engineering from UH's Cullen College of Engineering in December, worked with California-based Asylum Research. They used time-resolved Atomic Force Microscopy (AFM) to record topographical images of silicalite-1 surfaces as they grew.

AFM provides near molecular-resolution 3-D images of the crystal surface. Rimer said the technology, along with software developed by Asylum Research and his lab, made it possible to study the growth in situ, or in place. While his lab works at temperatures up to 100 degrees Celsius, the instrumentation can handle temperatures as high as 300 C, making it possible to use it for a number of materials that grow in solvothermal conditions, he said.

####

For more information, please click here

Contacts:
Jeannie Kever

713-743-0778

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Imaging

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Better microring sensors for optical applications May 10th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Materials/Metamaterials

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Computing faster with quasi-particles May 10th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Tools

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Nanoscale thermometers from diamond sparkles: A novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale has been developed May 3rd, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Nanometrics Announces Participation in Upcoming Investor Conferences May 3rd, 2019

Research partnerships

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project