Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UH researchers find definitive evidence of how zeolites grow: A breakthrough technique allowed them to track crystal growth in real time

This is a photograph of the high temperature liquid cell attached to the atomic force microscope (MFP-3D-SA, Asylum Research, Santa Barbara, CA). The cell is equipped with inlet/outlet ports for liquid injection and a heating element that regulates temperatures as high as 300 C.

Credit: University of Houston
This is a photograph of the high temperature liquid cell attached to the atomic force microscope (MFP-3D-SA, Asylum Research, Santa Barbara, CA). The cell is equipped with inlet/outlet ports for liquid injection and a heating element that regulates temperatures as high as 300 C.

Credit: University of Houston

Abstract:
Researchers have found the first definitive evidence of how silicalite-1 (MFI type) zeolites grow, showing that growth is a concerted process involving both the attachment of nanoparticles and the addition of molecules.

UH researchers find definitive evidence of how zeolites grow: A breakthrough technique allowed them to track crystal growth in real time

Houston, TX | Posted on May 15th, 2014

Both processes appear to happen simultaneously, said Jeffrey Rimer, an engineering professor at the University of Houston and lead author of a paper published Thursday in the journal Science.

He said a second component to the research could have even more lasting impact. He and researcher Alexandra I. Lupulescu used a new technique allowing them to view zeolite surface growth in real time, a breakthrough Rimer said can be applied to other types of materials, as well.

Typically, researchers examine zeolite growth by removing crystals from the natural synthesis environment and analyzing changes in their physical properties, said Rimer, Ernest J. and Barbara M. Henley Assistant Professor of Chemical and Biomolecular Engineering at UH. That has made understanding the fundamental mechanism of zeolite growth more challenging.

Zeolites occur naturally but can also be manufactured. This research involved silicalite-1, a synthetic, aluminum-free zeolite that has served as a prototype in literature for studying zeolite growth.

For more than two decades, researchers have theorized that nanoparticles, which are known to be present in zeolite growth solutions, played a role in the growth, but there was no direct evidence. And while most crystals grow through classical means - the addition of atoms or molecules to the crystal - the presence and gradual consumption of nanoparticles suggested a nonclassical pathway for zeolite crystallization.

Rimer and Lupulescu found that both classical and nonclassical growth models were at work.

"We have shown that a complex set of dynamics takes place," Rimer said. "In doing so, we have revealed that there are multiple pathways in the growth mechanism, which solves a problem that has been debated for nearly 25 years."

It solves a mystery in the world of crystal engineering, but how they did it may have a more lasting impact. Rimer and Lupulescu, who did the project as part of her dissertation, earning her Ph.D. in chemical engineering from UH's Cullen College of Engineering in December, worked with California-based Asylum Research. They used time-resolved Atomic Force Microscopy (AFM) to record topographical images of silicalite-1 surfaces as they grew.

AFM provides near molecular-resolution 3-D images of the crystal surface. Rimer said the technology, along with software developed by Asylum Research and his lab, made it possible to study the growth in situ, or in place. While his lab works at temperatures up to 100 degrees Celsius, the instrumentation can handle temperatures as high as 300 C, making it possible to use it for a number of materials that grow in solvothermal conditions, he said.

####

For more information, please click here

Contacts:
Jeannie Kever

713-743-0778

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Imaging

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Discoveries

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Materials/Metamaterials

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Research partnerships

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project