Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Strongly interacting electrons in wacky oxide synchronize to work like the brain

This is a cartoon of an oscillating switch, the basis of a new type of low-power analog computing.

Credit: Credit: Nikhil Shukla, Penn State
This is a cartoon of an oscillating switch, the basis of a new type of low-power analog computing.

Credit: Credit: Nikhil Shukla, Penn State

Abstract:
Current computing is based on binary logic -- zeroes and ones -- also called Boolean computing, but a new type of computing architecture stores information in the frequencies and phases of periodic signals and could work more like the human brain using a fraction of the energy necessary for today's computers, according to a team of engineers.

Strongly interacting electrons in wacky oxide synchronize to work like the brain

University Park, PA | Posted on May 15th, 2014

Vanadium dioxide is called a "wacky oxide" because it transitions from a conducting metal to an insulating semiconductor and vice versa with the addition of a small amount of heat or electrical current. A device created by electrical engineers at Penn State uses a thin film of vanadium oxide on a titanium dioxide substrate to create an oscillating switch.

Using a standard electrical engineering trick, Nikhil Shukla, graduate student in electrical engineering, added a series resistor to the oxide device to stabilize oscillations over billions of cycles. When Shukla added a second similar oscillating system, he discovered that, over time, the two devices began to oscillate in unison. This coupled system could provide the basis for non-Boolean computing. Shukla worked with Suman Datta, professor of electrical engineering, and co-advisor Roman Engel-Herbert, assistant professor of materials science and engineering, Penn State. They reported their results today (May 14) in Scientific Reports.

"It's called a small-world network," explained Shukla. "You see it in lots of biological systems, such as certain species of fireflies. The males will flash randomly, but then for some unknown reason the flashes synchronize over time."

The brain is also a small-world network of closely clustered nodes that evolved for more efficient information processing.

"Biological synchronization is everywhere," added Datta. "We wanted to use it for a different kind of computing called associative processing, which is an analog rather than digital way to compute."

An array of oscillators can store patterns -- for instance, the color of someone's hair, their height and skin texture. If a second area of oscillators has the same pattern, they will begin to synchronize, and the degree of match can be read out.

"They are doing this sort of thing already digitally, but it consumes tons of energy and lots of transistors," Datta said.

Datta is collaborating with Vijay Narayanan, professor of computer science and engineering, Penn State, in exploring the use of these coupled oscillations to solve visual recognition problems more efficiently than existing embedded vision processors.

Shukla and Datta called on the expertise of Cornell University materials scientist Darrell Schlom to make the vanadium dioxide thin film, which has extremely high quality similar to single crystal silicon. Arijit Raychowdhury, computer engineer, and Abhinav Parihar graduate student, both of Georgia Tech, mathematically simulated the nonlinear dynamics of coupled phase transitions in the vanadium dioxide devices. Parihar created a short video simulation of the transitions, which occur at a rate close to a million times per second, to show the way the oscillations synchronize. Venkatraman Gopalan, professor of materials science and engineering, Penn State, used the Advanced Photon Source at Argonne National Laboratory to visually characterize the structural changes occurring in the oxide thin film in the midst of the oscillations.

Datta believes it will take seven to 10 years to scale up from their current network of two-three coupled oscillators to the 100 million or so closely packed oscillators required to make a neuromorphic computer chip. One of the benefits of the novel device is that it will use only about one percent of the energy of digital computing, allowing for new ways to design computers. Much work remains to determine if vanadium dioxide can be integrated into current silicon wafer technology.

"It's a fundamental building block for a different computing paradigm that is analog rather than digital," said Shukla.

###

Also contributing to this work are Eugene Freeman and Greg Stone, all of Penn State; Haidan Wen and Zhonghou Cai, Argonne National Laboratory; and Hanjong Paik, Cornell University.

The Office of Naval Research primarily supported this work. The National Science Foundation's Expeditions in Computing Award also supported this work.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Hardware

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Thin films

Ultra-thin ferroelectric material for next-generation electronics October 12th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Chip Technology

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Military

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project