Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > MEMS nanoinjector for genetic modification of cells: Researchers from Nexus Spine LLC and Brigham Young University have developed new, high-tech device for transferring DNA into cells

This SEM (scanning electron microscope) image shows the nanoinjector next to a latex bead the same size as an egg cell. You can see the size of the nanoinjector and its lance compared to a cell.

Credit: Brian Jensen/BYU
This SEM (scanning electron microscope) image shows the nanoinjector next to a latex bead the same size as an egg cell. You can see the size of the nanoinjector and its lance compared to a cell.

Credit: Brian Jensen/BYU

Abstract:
The ability to transfer a gene or DNA sequence from one animal into the genome of another plays a critical role in a wide range of medical research—including cancer, Alzheimer's disease, and diabetes.

MEMS nanoinjector for genetic modification of cells: Researchers from Nexus Spine LLC and Brigham Young University have developed new, high-tech device for transferring DNA into cells

Washington, DC | Posted on May 13th, 2014

But the traditional method of transferring genetic material into a new cell, called "microinjection," has a serious downside. It involves using a small glass pipette to pump a solution containing DNA into the nucleus of an egg cell, but the extra fluid can cause the cell to swell and destroy it—resulting in a 25 to 40 percent cell death rate.

Now, thanks to the work of researchers Brigham Young University, there's a way to avoid cell death when introducing DNA into egg cells. In Review of Scientific Instruments, the team describes its microelectromechanical system (MEMS) nanoinjector, which was designed to inject DNA into mouse zygotes (single-cell embryos consisting of a fertilized egg).

"Essentially, we use electrical forces to attract and repel DNA—allowing injections to occur with a tiny, electrically conductive lance," explained Brian Jensen, associate professor in the Department of Mechanical Engineering at Brigham Young University. "DNA is attracted to the outside of the lance using positive voltage, and then the lance is inserted into a cell."

The MEMS nanoinjector's lance is incredibly small and no extra fluid is used with this technique, so cells undergo much less stress compared to the traditional microinjection process.

This ability to inject DNA into cells without causing cell death leads to "more efficient injections, which in turn reduces the cost to create a transgenic animal," according to Jensen.

One of the team's most significant findings is that it's possible to use the electrical forces to get DNA into the nucleus of the cell—without having to carefully aim the lance into the pronucleus (the cellular structure containing the cell's DNA). "This may enable future automation of the injections, without requiring manual injection," Jensen says.

It may also mean that injections can be performed in animals with cloudy or opaque embryos. "Such animals, including many interesting larger ones like pigs, would be attractive for a variety of transgenic technologies," said Jensen. "We believe nanoinjection may open new fields of discovery in these animals."

As a next step, Jensen and colleagues are performing injections into cells in a cell culture using an array of lances that can inject hundreds of thousands of cells at once. "We expect the lance array may enable gene therapy using a culture of a patient's own cells," he noted.

####

About American Institute of Physics
The journal Review of Scientific Instruments, which is produced by AIP Publishing, presents innovation in instrumentation and methods across disciplines.

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article "A Self-Reconfiguring Metamorphic Nanoinjector for Injection into Mouse Zygotes" by Quentin T. Aten, Brian D. Jensen, Sandra H. Burnett, and Larry L. Howell will be published in the journal Review of Scientific Instruments on Tuesday, May 13, 2014 (DOI: 10.1063/1.4872077). After that date, it will be available at:

Related News Press

News and information

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Nanomedicine

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Discoveries

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Announcements

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Nanobiotechnology

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

Determination of Critical Force, Time for Manipulation of Biological Nanoparticles January 7th, 2015

DNA Origami Could Lead to Nano “Transformers” for Biomedical Applications: Tiny hinges and pistons hint at possible complexity of future nano-robots January 5th, 2015

Alliances/Partnerships/Distributorships

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

GLOBALFOUNDRIES and Linear Dimensions to Offer Joint Analog Solution For Fast-Growing Wearables and MEMs Sensors Markets January 9th, 2015

Nanowire clothing could keep people warm -- without heating everything else January 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE