Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Halas, Koushanfar land coveted MURI grants: Halas' Laboratory for Nanophotonics wins 4th MURI since 1999

Naomi Halas
CREDIT: Rice University
Naomi Halas

CREDIT: Rice University

Abstract:
Scientists from five Rice University research groups, including four from Rice's Laboratory for Nanophotonics (LANP), are embarking on new nanotechnology research programs related to green chemistry, energy sustainability and computer security, thanks to two new multimillion-dollar grants from the Department of Defense's Multidisciplinary University Research Initiative (MURI).

Halas, Koushanfar land coveted MURI grants: Halas' Laboratory for Nanophotonics wins 4th MURI since 1999

Houston, TX | Posted on May 13th, 2014

Naomi Halas, director of LANP, is the principal investigator on a five-year, $7.5 million MURI from the Air Force Office of Scientific Research that aims to shed light on plasmon-based photochemical and photophysical processes. The project includes funding for Rice co-principal investigators Peter Nordlander, Stephan Link and Junrong Zheng and is the fourth MURI award for LANP since 1999.

Farinaz Koushanfar, associate professor of electrical and computer engineering and director of Rice's Adaptive Computing and Embedded Systems (ACES) Laboratory, is co-PI on another MURI from the Air Force that will analyze and upgrade security protections for nanoscale computer hardware. The project will provide more than $1 million for Rice research over the next five years.

The MURI program supports research conducted by teams of investigators that intersect more than one traditional science and engineering discipline. More than 360 teams applied for the 24 new MURIs awarded by the Pentagon last month.

Halas, the Stanley C. Moore Professor in Electrical and Computer Engineering and a professor of biomedical engineering, chemistry, physics and astronomy at Rice, said LANP's new MURI will follow up on two breakthrough discoveries.

"Within the past 18 months, we have found that plasmonic nanoparticles can be used two distinct ways -- to induce chemical reactions through a process called photocatalysis and to convert sunlight directly into steam with extraordinary efficiency," Halas said. "The Air Force has asked us to explore the underlying physics of each of these processes so we can better understand how to use them for specific applications."

Plasmons are waves of electronic energy that slosh back and forth across the surface of tiny metallic nanoparticles. Plasmons are created when light strikes the nanoparticle, but only a specific wavelength of light will induce a plasmonic wave, and the plasmon-inducing wavelength varies for each particle, depending upon its shape, size and chemical composition. LANP nanoscientists specialize in creating plasmonic nanoparticles that are tuned to interact with particular wavelengths of light.

In their work on solar steam, LANP scientists have created nanoparticles that convert a wide spectrum of sunlight into heat that efficiently vaporizes water. The resulting energy-rich steam can be used for water remediation, sterilization, distillation, electric power generation and other applications.

In their photocatalysis research, LANP researchers showed that their light-harvesting nanoparticles can catalyze chemical reactions. The finding is important because a majority of commercial chemical processes use catalysts -- materials whose very presence spurs useful chemical reactions that would otherwise occur very slowly or not at all.

In May 2011, Halas, Nordlander and LANP colleagues showed they could couple light-harvesting nanoparticles to semiconductors in a way that plasmonic energy could be transferred from the metal to the semiconductor. Working in collaboration with MURI co-PI Emily Carter of Princeton University, they showed in late 2012 that this electronic process could be used to drive a catalytic process that broke strong chemical bonds.

"If you can break bonds, you can induce chemical reactions," said Nordlander, professor of physics and astronomy. "So that discovery showed the world that this is a process that can be generally exploited. Potentially, there are many uses, but we need to better understand the underlying physics and the chemistry. For example, we don't know the ideal size for the particles and the best way to optimize them with respect to the substrate."

Nordlander said Link, associate professor of chemistry and of electrical and computer engineering, and Zheng, assistant professor of chemistry, will work on both the photocatalysis and photothermal MURI research tracks. Link's group will examine the charge and energy transfer that take place between plasmons and molecules, and Zheng's group will use spectroscopy to measure the processes in real time.

Additional co-PIs include Princeton's Carter; Louis Brus, Columbia University; Renee Frontiera, University of Minnesota; and Christoph Lienau, University of Oldenburg, Germany.

"This is a complex problem, and we've assembled a 'dream team' to study it," Halas said. "The PIs have all worked together before in smaller groups, but this will be the first time that all of us come together to address a common problem. It's exciting, because each principle investigator brings something unique to the team."

Koushanfar is one of 10 investigators on a new MURI based at the University of Connecticut (UConn) that also includes co-PIs from the University of Maryland. The team hopes to develop a universal security theory for next-generation nanoscale computing devices that are based on technologies like memristors, nanowires and graphene.

The research has three aims: to predict the security properties and vulnerabilities of upcoming computer hardware, to evaluate how existing hardware security approaches might be incorporated into next-generation hardware and to create design methodologies that incorporate hardware security in the design phase.

"Security has mostly been an afterthought for building computing devices," Koushanfar said. "In conventional integrated circuit technology, once a design is realized and deployed, integrating security is difficult. We are truly excited to have the opportunity to investigate the security properties and vulnerabilities of next-generation nanodevices. We believe this work will lead to a paradigm shift incorporating security fully into the design and development of future generations of nanoscale computing hardware."

She said each researcher working on the MURI has unique capabilities in security analysis, nanoelectronics, counterfeit device detection, cryptography and cyberattack countermeasures.

Koushanfar's ACES Lab will focus on the development of innovative nanoscale low-power, high-performance processors and advanced security features like "unclonable" functionality and next-generation random-number generators. Rice researchers will also conduct security system analysis and explore cyberattack countermeasures.

The Department of Defense's MURI program began 25 years ago and has spurred advances in precision navigation and targeting, atomic and molecular self-assembly projects and the computing field known as spintronics.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations on Twitter @RiceUNews.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The list of projects selected for fiscal 2014 funding may be found at:

Related News Press

News and information

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Chemistry

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Announcements

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Military

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Energy

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

A more complete picture of the nano world August 24th, 2017

Photonics/Optics/Lasers

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project