Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Superparamagnetism Invention in Plants Materials: New discovery in nanoparticles by Indian researcher

Magnetic behaviors of Plants Materials
Magnetic behaviors of Plants Materials

Abstract:
The researcher Ms.Theivasanthi has recently prepared "The World's first plants materials based superparamagnetic particles" - named as "Santhi Particles". It has been observed room temperature superparamagnetic behavior in that plants materials (Acalypha indica, Cynodon dactylon, Terminalia chebula, Eugenia jambolina and Cassia auriculata). These plants have been known for Diabetes treatment and have antioxidants. One of the plants Cynodon dactylon has anti-cancer properties also too.

Superparamagnetism Invention in Plants Materials: New discovery in nanoparticles by Indian researcher

Rajapalayam, India | Posted on May 7th, 2014

n this series, some more attempts have been made to invent superparamagnetic particles from vegetables and food materials. The details have been released in the data set: goo.gl/vwisgn . Particles of Curcuma longa and Cocos nucifera show superparamagnetic behavior (particle size 20 nm and 18 nm respectively - size calculated from VSM analysis).

Particles of Amorphophallus konjac (particle size 21 nm calculated from XRD analysis) and a mixed vegetable powder (Cyamopsis tetragonoloba, Vicia faba, Momordica charantia and Abelmoschus esculentus) not show superparamagnetic behavior. Both these powders have anti-diabetic and antioxidant properties. In addition, Konjac powder has anticancer properties and its nanosize may increase its cancer and other properties.

These research activities will lead to new concept in magnetic research in near future. VSM analyses of the samples have been done at SAIF, IIT Madras (India). Further research on this issue is undergoing. Superparamagnetic nanoparticles have many industrial applications and biomedical applications like Contrast agents in Magnetic Resonance Imaging (MRI), Magnetic separation, targeted drug delivery, hyperthermia of cancer etc.

Making these plants based powders as bio-nano powder using nanotechnology will improve their results. The concept involved in the bio-nano powder is, "reducing the medications means lesser the side effects". Also, the nano-size will increase the specific surface area and site of actions of this powder. Nanoparticles usually have better or different qualities than the bulk material of the same element and have immense surface area relative to volume. As the size of a particle is reduced, the number of defects per particle is also reduced and mechanical properties rise proportionately

Special features: The plants / food based superparamagnetic particles have no / very least side effects as well as bio-compatible nature. Low cost / mass production within short time - Produced from the materials already in consumption by human & animals internally / externally.

The researcher calls all the interested collaborators / researchers to contact her for collaborative works.

####

For more information, please click here

Contacts:
T.Theivasanthi,
Senior lecturer in Physics,
PACR Polytechnic College, Rajapalayam – 626108.
Email: Mobile: 9344643384.
http://theivasanthi.weebly.com
Scholar.google.co.in Profile: http://goo.gl/CKi6QM
http://orcid.org/0000-0002-2280-9316
http://www.researcherid.com/rid/F-6477-2011

Copyright © T.Theivasanth

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Discoveries

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Materials/Metamaterials

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Nanobiotechnology

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project