Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers use DNA to build tool that may literally shine light on cancer: Patented nanosensor detects and reacts to second pH changes in cells caused by cancer

Andrea Idili, Alexis Vallée-Bélisle and Francesco Ricci have developed a DNA-based nanosensor that allows to measure pH variation at the nanoscale. This nanosensor may significantly aid efforts to build nanodevices for cancer in-vivo imaging and targeted drug-delivery. This nanosensor measures less than 10 nm and unfolds at a specifically programmed pH.

Credit: Marco Tripodi
Andrea Idili, Alexis Vallée-Bélisle and Francesco Ricci have developed a DNA-based nanosensor that allows to measure pH variation at the nanoscale. This nanosensor may significantly aid efforts to build nanodevices for cancer in-vivo imaging and targeted drug-delivery. This nanosensor measures less than 10 nm and unfolds at a specifically programmed pH.

Credit: Marco Tripodi

Abstract:
Bioengineers at the University of Rome Tor Vergata and the University of Montreal have used DNA to develop a tool that detects and reacts to chemical changes caused by cancer cells and that may one day be used to deliver drugs to tumor cells.

Researchers use DNA to build tool that may literally shine light on cancer: Patented nanosensor detects and reacts to second pH changes in cells caused by cancer

Montreal, Canada | Posted on May 7th, 2014

The researchers' nanosensor measures pH variations at the nanoscale - how acidic (a higher pH level) or alkaline (a lower pH level) it is. Many biomolecules, such as enzymes and proteins, are strongly regulated by small pH changes. These changes affect in turn biological activities such as enzyme catalysis, protein assembly, membrane function and cell death. There is also a strong relation between cancer and pH.

Cancer cells often display a lower pH compared to normal cells: the pH level inside cancer cells is higher than it is outside. "In living organisms, these small pH changes typically occur in tiny areas measuring only few hundred nanometers," says senior author Prof. Francesco Ricci. "Developing sensors or nanomachines that can measure pH changes at this scale should prove of utility for several applications in the fields of in-vivo imaging, clinical diagnostics and drug-delivery."

"DNA represents an ideal material to build sensors or nanomachines at the nanometer scale" says senior author Prof. Vallée-Bélisle. "By taking advantage of a specific DNA sequences that form pH-sensitive triple helix, we have designed a versatile nanosensor that can be programmed to fluoresce only at specific pH values." Fluorescence is the emission of radiation, including visible light, caused by an exchange of energy. "This programming ability represents a key feature for clinical applications - we can design a specific sensor to send a fluorescent signal only when the pH reaches a specific value which is, for example, characteristic of a specific disease," adds first author Andrea Idili.

In the future, this recently patented nanotechnology may also find applications in the development of novel drug-delivery platforms that release chemio-therapeutic drugs only in the viscinity of tumor cells.

###

This research was supported by the European Research Council and the Natural Sciences and Engineering Research Council of Canada. Andrea Idili and Francesco Ricci at the Chemistry Department of the University of Rome, TorVergata, and Alexis Vallée-Bélisle of the University of Montreal's Department of Chemistry and Department of Biochemistry published "Programmable pH triggered DNA nanoswitches," in the Journal of American Chemical Society by. The University of Montreal is known officially as Université de Montréal.

####

For more information, please click here

Contacts:
William Raillant-Clark

514-566-3813

Copyright © University of Montreal

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Nanomedicine

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Discoveries

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Announcements

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Nanobiotechnology

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Research partnerships

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

Artificial intelligence accelerates discovery of metallic glass: Machine learning algorithms pinpoint new materials 200 times faster than previously possible April 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project