Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Design for Manufacture – Enabling a Great Leap forward for Microfluidics! A “Design for Manufacturing” Guidebook for the Design of Microfluidic Devices

Abstract:
There is considerable demand for devices that can quickly identify pathogens in blood accurately, that can monitor response to medication, or check the safety of food and water. In recent years several microfluidics-based devices for these and other "point of use" applications have entered the market. At the same time, hardly a day goes by without an announcement from a university group presenting a novel solution for another unmet need.

Design for Manufacture – Enabling a Great Leap forward for Microfluidics! A “Design for Manufacturing” Guidebook for the Design of Microfluidic Devices

Cambridge, UK | Posted on May 6th, 2014

Most of these new and creative designs of microfluidics-based products fail on their way to the market or arrive there after long and costly iterations of (re-)development processes. Transferring a "proof of principle" research prototype of a microfluidic device to a production line takes too long and is often too expensive to be commercially feasible. This is the case for a wide variety of materials and manufacturing processes. An important part of the challenge is that researchers are often designing devices for the first time and stumble over multiple problems that an experienced designer might be able to avoid. The flip side of the same argument is that potential manufacturers are often frustrated when prototype designs presented to them are difficult, inappropriate or even impossible to manufacture in large volumes at reasonable cost.

A more manufacturing oriented design would bypass this stumbling block. The identification of this opportunity spurred a group of leading microfluidics organisations in the "Microfluidics Consortium", to produce a "Design for Manufacturing" guideline. This document, edited by Henne van Heeren from enablingMNT, contains a set of design guidelines, based on the expertise of consortium members working across a wide range of microfluidic techniques. It provides production design rules for the major industrial fabrication technologies used in microfluidics: glass/planar processing (including integrated electrodes), polymer/injection moulding and imprint techniques. The guidelines document contains several decision support charts and tables as well as suggestions for preferred chip sizes and microfluidic interconnections. It does not set a strict boundary for a design but it offers several options for a designer, all of them industrially supported and having an ability to be scaled up to high volumes. This document is available free of charge to researchers and developers around the world who are contemplating the creation of prototype devices containing microfluidics. Its purpose is to make developers aware of some of the "design for manufacture" issues, which, if dealt with early, can improve the probability of their device being manufacturable, economically and reliably.

Following extensive discussion with the members and outside experts at meetings of the Microfluidics Consortium in Boston, Ede and San Diego, the final version was presented on April 30th to Prof. Nico de Rooij. "All industries come to the point where the focus of R&D transfers from using homemade improvised prototypes to working on the basis of industrially available components to achieve manufacturable designs. Microfluidics have come to this point and this Design Guide is its hallmark." said Nico de Rooij, director of EPFL's Institute of Microengineering, Head of the Sensors, Actuators and Microsystems Laboratory SAMLAB and Vice-President of the CSEM SA. Professor de Rooij is one of the pioneers of microfluidics.

The work was supported by the European MFManufacturing project.

####

For more information, please click here

Contacts:
Henne van Heeren
enablingMNT Group
Tel.: +31 78 6300748
E-Mail:
www.enablingmnt.com, www.microfluidicsinfo.com

Copyright © enablingMNT Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The Design Guidelines can be downloaded as a pdf from the Microfluidics Consortium’s public domain website at:

Related News Press

News and information

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Microfluidics/Nanofluidics

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Announcements

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Alliances/Trade associations/Partnerships/Distributorships

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

John Chong of Kionix Named Chair of MEMS & Sensors Industry Group Governing Council February 6th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project