Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Shining a light on heart disease

Abstract:
A study to investigate how nanoparticles could be used to improve the diagnosis and treatment of cardiovascular disease has received 3 million funding.

Shining a light on heart disease

Glasgow, UK | Posted on May 2nd, 2014

The project, led by the University of Strathclyde and involving researchers from the Universities of Glasgow and Warwick, is being supported by the Engineering and Physical Sciences Research Council (EPSRC).

Principal Investigator Professor Duncan Graham, Director of the Centre for Molecular Nanometrology at the University of Strathclyde, said: "Cardiovascular diseases cause more than a quarter of all deaths in the UK each year, and death rates from coronary heart disease are highest in Scotland.

"Estimates suggest the UK spends nearly 2 billion each year on healthcare costs of treating coronary heart disease - our research combines nanotechnology with advanced statistical and biomedical research, focused on a clinical application which we hope will lead to a beneficial change in treatment of cardiovascular disease patients."

The research team will investigate atherosclerosis-related cardiovascular diseases (CVD), which are the leading cause of mortality in UK.
Currently, the risk of atherosclerosis in patients is identified by detecting specific inflammatory markers in the blood. However, atherosclerosis is characterised by inflammation localised in vessel walls and the researchers suspect it may be more beneficial to quantify vascular inflammation and to develop a method of delivering drugs directly to the diseased vessel.

To this end, the researchers will use nanoparticles - small metallic particles which can be tagged onto other molecules which possess the ability to recognise inflammatory markers. The nanoparticles can then be detected by a technique called surface enhanced Raman scattering, whereby a light source is shone on the nanoparticles, transferring energy and causing them to vibrate.

The vibrations are detected and the strength of the signal provides an indication of the amount of nanoparticles - and therefore inflammatory markers - present.

Dr Pasquale Maffia, senior lecturer in immunology at the University of Glasgow, said "Using this nanoparticle technology, the primary aim of the research is to develop a highly-sensitive but relatively affordable means of measuring inflammatory molecules in samples of atherosclerotic plaque from patients which could enable the clinician to forecast how the disease will progress."

It is hoped in the future that the nanoparticles can be further customised to enable the delivery of anti-inflammatory drugs.

Dr Maffia added: "The energetic vibrations could be harnessed as a drug release mechanism which could be time-controlled by the flick of a switch. The major advantage of this set-up is that the equipment is portable, so this novel nanoparticle diagnosis and treatment system could potentially be made accessible to anyone."

The funding award is part of the EPSRC Healthcare Technologies theme which plays a vital role in sponsoring basic research capabilities to create new techniques and technologies to address national and global health challenges.

The team involved in the project are: Professor Duncan Graham and Dr Karen Faulds, University of Strathclyde; Dr Pasquale Maffia, Professor Naveed Sattar, Professor Iain McInnes and Professor Paul Garside, University of Glasgow; and Professor Mark Girolami of the University of Warwick - a composite of physical scientists who are specialists in nanoparticle technology, information technologists capable of interpreting and presenting data from complicated nanoparticle assays and clinical partners who are interested in how best to utilise this new information in improved healthcare practice.

####

About University of Strathclyde
The University of Strathclyde is a leading international technological university which is recognised for strong research links with business and industry, commitment to enterprise and skills development, and knowledge sharing with the private and public sectors. The University was named UK University of the Year in the 2012 Times Higher Education (THE) Awards. In the 2013 THE Awards, the University was named Entrepreneurial University of the Year.

For more information, please click here

Contacts:
Lachlan Mackinnon


Media and Corporate Communications
University of Strathclyde
T: 0141-548 4373

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Discoveries

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project