Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Properties of water at nanoscale will help to design innovative biomedical and energy technologies

Abstract:
Scientists from Politecnico di Torino (Turin, Italy) and Houston Methodist Research Institute (Houston, USA) have just proposed on Nature Communications a novel understanding of unexpected water properties at the nanoscale in the close proximity of solid surfaces. More rationally designed contrast agents for improved Magnetic Resonance Imaging performances are the first applications of the discovery.

Properties of water at nanoscale will help to design innovative biomedical and energy technologies

Turin, Italy | Posted on April 30th, 2014

Mechanical engineers from both Department of Energy at Politecnico di Torino and Translational Imaging Department at Houston Methodist Research Institute have modeled and provided a novel insight of the surprising water properties at the nanoscale, even if many other intriguing water characteristics are still far to be fully unveiled. A broad range of technological applications may benefit from these findings, from engineering to biomedical field, as recently shown in a scientific paper published on Nature Communications [*].

Swimming in a honey pool. That's the sensation a water molecule should "feel" while approaching a solid surface within a nanometer (i.e. less than a ten-thousandth of hair diameter). The reduction in water mobility in the very close proximity of surfaces at the nanoscale is the well-known phenomenon of "nanoconfinement", and it is due to both electrostatic and van der Waals attractive forces ruling matter interactions at that scale.

In this context, scientists from Politecnico di Torino and Houston Methodist Research Institute have taken a further step forward, by formulating a quantitative model and a physical interpretation able of predicting the nanoconfinement effect in a rather general framework. In particular, geometric and chemical characteristics as well as physical conditions of diverse nanoconfining surfaces (e.g. proteins, carbon nanotubes, silica nanopores or iron oxide nanoparticles) have been quantitatively related to mobility reduction and "supercooling" conditions of water, namely the persistence of water in a liquid state at temperatures far below 0C, when close to a solid surface.

This result has been achieved after two years of in silico (i.e. computer-based) and in vitro (i.e. experiment-driven) activities by Eliodoro Chiavazzo, Matteo Fasano, Pietro Asinari (Multi-Scale Modelling Lab [**], Department of Energy at Politecnico di Torino) and Paolo Decuzzi (Center for the Rational Design of Multifunctional Nanoconstructs [***] at Houston Methodist Research Institute).

This study may soon find applications in the optimization and rational design of a broad variety of novel technologies ranging from applied physics (e.g. "nanofluids", suspensions made out of water and nanoparticles for enhancing heat transfer) to sustainable energy (e.g. thermal storage based on nanoconfined water within sorbent materials); from detection and removal of pollutant from water (e.g. molecular sieves) to nanomedicine.

The latter is the field where the research has indeed found a first important application. Every year, almost sixty millions of Magnetic Resonance Imaging (MRI) scans are performed, with diagnostic purposes. In the past decade, MRI technology benefitted from various significant scientific advances, which allowed more precise and sharper images of pathological tissues. Among other, contrast agents (i.e. substances used for improving contrast of structures or fluids within the body) importantly contributed in enhancing MRI performances.

This research activity has been able to explain and predict the increase in MRI performances due to nanoconfined contrast agents, which are currently under development at the Houston Methodist Research Institute. Hence, the discovery paves the way to further increase in the quality of MRI images, in order to possibly improve chances of earlier and more accurate detection of diseases in millions of patients, every year.

Additional results and applications of nanoconfinement effect on nanomedicine will be published soon, thanks to a multidisciplinary collaboration between biomedical (Houston Methodist), engineering (Politecnico di Torino) and chemical (Rice University, Houston-TX) research groups. In particular, iron oxide contrast agents loaded in silicon or polymeric nanovectors are currently investigated, because they can be first magnetically concentrated in human diseased tissues and then employed for enhancing MRI performances. Moreover, such a nanoconstructs own theranostic properties, which means that they can be used for diagnostic (i.e. MRI) and therapeutic (i.e. temperature triggered drug release or hyperthermia treatments) purposes at the same time, which is a significant step forward in the war on cancer.

####

About Politecnico di Torino
The Politecnico di Torino, founded in 1906 from the roots of the Technical School for Engineers created in 1859, has a long-standing tradition of leadership of polytechnic culture. It is one of the most important universities in Europe for engineering and architecture studies, strongly committed to collaboration with industry.

The Politecnico offers excellence in technology and promotes the ability to carry out theoretical or applied research and also the capacity to achieve concrete and reliable productive processes or organise services and facilities. By the end of his or her degree, a Politecnico di Torino graduate has gained a vast, multifaceted range of skills and knowledge. Students acquire competence in the interdisciplinary nature of the various fields of the contemporary scientific world, while still aware of the needs of people and society.

For more information, please click here

Contacts:
Tiziana Vitrano

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Nanomedicine

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Discoveries

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Announcements

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Energy

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Water

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

Global Nano-water Machine Industry 2015 Market Research Report July 23rd, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project