Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices

Stacked nanoscale magnetic vortices (blue and green discs) separated by an extremely thin layer of copper can be driven to oscillate in unison, potentially producing a powerful signal that could be put to work in a new generation of cell phones, computers, and other applications. This illustration shows an array of such stacked vortices, each measuring a few hundred nanometers in diameter.
Stacked nanoscale magnetic vortices (blue and green discs) separated by an extremely thin layer of copper can be driven to oscillate in unison, potentially producing a powerful signal that could be put to work in a new generation of cell phones, computers, and other applications. This illustration shows an array of such stacked vortices, each measuring a few hundred nanometers in diameter.

Abstract:
Scientists seeking ways to synchronize the magnetic spins in nanoscale devices to build tiny yet more powerful signal-generating or receiving antennas and other electronics have published a study showing that stacked nanoscale magnetic vortices separated by an extremely thin layer of copper can be driven to operate in unison. These devices could potentially produce a powerful signal that could be put to work in a new generation of cell phones, computers, and other applications.

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices

Upton, NY | Posted on April 30th, 2014

The aim of this "spintronic" technology revolution is to harness the power of an electron's "spin," the property responsible for magnetism, rather than its negative charge.

"Almost all of today's electronic technology, from the light bulb to the smartphone, involves the movement of charge," said Brookhaven physicist Javier Pulecio, lead author on the new study. "But harnessing spin could open the door for much more compact and novel types of antennas that act as spin wave emitters, signal generators—such as the clocks that synchronize everything that goes on inside a computer—as well as memory and logic devices."

The secret to harnessing spin is to control its evolution and spin configuration.

"If you grab a circular refrigerator magnet and place it under a microscope that could image electron spins, you would see the magnet has several regions called domains, where within each domain all the spins point in the same direction," explained group leader Yimei Zhu. "If you were to shrink that magnet down to a size smaller than a red blood cell, the spins inside the magnet will begin to align themselves into unique spin textures."

For example, in a magnetic disc with a radius of just 500 nanometers (billionths of a meter) and a thickness of just 25 nanometers, the disc can no longer support multiple domains and the spins align in a hurricane-like rotational pattern to reduce the overall magnetic energy. The spins parallel to the disc's surface rotate around a core, much like the eye of the hurricane, either clockwise or anticlockwise. And at the core, the magnetic spins point out of the disc's surface, either up or down. So this structure, a magnetic vortex, has four possible states—up or down paired with clockwise or anticlockwise.

What's more, the core of the magnetic vortex can be moved around within a nanodisc by applying either an electric current or an external magnetic field, "so it behaves much like a particle—a quasi-particle," Pulecio said. Applying certain high-frequency electromagnetic excitations can set the vortex core moving in a circular motion about the center of the disc. These circular motions, or oscillations, are what scientists hope to put to use.

"Magnetic vortex-based oscillators can be tuned to operate at different narrowly defined frequencies, making them extremely flexible for telecommunications applications," Pulecio said. "They are also self-contained elements, about 100,000 times smaller than oscillators based on voltage instead of spin, so they could prove to be less expensive, consuming less electricity, and won't take up as much room on the device. That's especially important if you are talking about miniaturization for cell phones, wearable electronics, tablets, and so on."

For now, however, the power output of these spintronic devices is relatively small compared with oscillator technologies currently in use. So scientists are exploring ways to synchronize the oscillations of multiple magnetic vortices.

In the Nature Communications paper, Pulecio, Zhu, and their collaborators at the Swiss Light Source, Brookhaven's National Synchrotron Light Source, and Stony Brook University explored expanding the device in three dimensions by stacking one vortex on top of another, with the individual discs separated by a thin non-magnetic layer. They investigated how changing the thickness of the non-magnetic layer affected the fundamental interactions at the nanoscale, and how those, in turn, affected the coupled dynamics of the vortices. They directly imaged how the vortices responded to high-frequency stimulation using high-resolution Lorentz transmission electron microscopy imaging.

The results: A thicker separating layer resulted in somewhat unordered motion of the coupled vortices in the two discs. The thinner the separating layer, the stronger the vortices were linked, synching up in space into coherent circular motion. This could help to overcome the power limitations of current vortex-based spintronic antennas by creating arrays of synchronized tiny oscillators through coupled 3D stacks.

The scientists are currently working with other more exotic systems to understand the dynamics in both time and space that could make spintronic technologies a reality.

"Magnetic vortices were one of the first observed magnetic quasi-particles and we are currently looking to expand our investigations to observe other newly discovered spin textures and how we might harness those," Pulecio said.

This research was supported by the Core-Research Programs within Basic Energy Science, DOE Office of Science. Fabrication of the devices was supported in part by the Center for Functional Nanomaterials at Brookhaven National Laboratory.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh

631-344-8350

Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: Coherence and modality of driven interlayer coupled magnetic vortices:

Related News Press

Laboratories

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

News and information

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

Imaging

New imaging agent provides better picture of the gut July 25th, 2014

Physics

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Wireless/telecommunications/RF/Antennas

Measuring the mass of 'massless' electrons: Taming graphene, Harvard-led researchers successfully measure collective mass of ‘massless’ electrons in motion June 24th, 2014

New quantum mechanism to trigger the emission of tunable light at terahertz frequencies June 18th, 2014

Ultra-thin wires for quantum computing: Carefully fabricating nanofibers by heating and pulling may make for highly-efficient, optics-based, low-power atom traps June 17th, 2014

SABIC collaborates with Cima NanoTech on breakthrough technology: industry-first transparent conductive polycarbonate film May 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Spintronics

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Relativity shakes a magnet: Researchers from Mainz University demonstrate a new principle for magnetic recording / Publication in Nature Nanotechnology March 4th, 2014

Discoveries

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Materials/Metamaterials

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Announcements

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Tools

Malvern Instruments completes acquisition of MicroCal and announces purchase of Archimedes product from Affinity Biosensors July 25th, 2014

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Photonics/Optics/Lasers

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE