Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices

Stacked nanoscale magnetic vortices (blue and green discs) separated by an extremely thin layer of copper can be driven to oscillate in unison, potentially producing a powerful signal that could be put to work in a new generation of cell phones, computers, and other applications. This illustration shows an array of such stacked vortices, each measuring a few hundred nanometers in diameter.
Stacked nanoscale magnetic vortices (blue and green discs) separated by an extremely thin layer of copper can be driven to oscillate in unison, potentially producing a powerful signal that could be put to work in a new generation of cell phones, computers, and other applications. This illustration shows an array of such stacked vortices, each measuring a few hundred nanometers in diameter.

Abstract:
Scientists seeking ways to synchronize the magnetic spins in nanoscale devices to build tiny yet more powerful signal-generating or receiving antennas and other electronics have published a study showing that stacked nanoscale magnetic vortices separated by an extremely thin layer of copper can be driven to operate in unison. These devices could potentially produce a powerful signal that could be put to work in a new generation of cell phones, computers, and other applications.

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices

Upton, NY | Posted on April 30th, 2014

The aim of this "spintronic" technology revolution is to harness the power of an electron's "spin," the property responsible for magnetism, rather than its negative charge.

"Almost all of today's electronic technology, from the light bulb to the smartphone, involves the movement of charge," said Brookhaven physicist Javier Pulecio, lead author on the new study. "But harnessing spin could open the door for much more compact and novel types of antennas that act as spin wave emitters, signal generators—such as the clocks that synchronize everything that goes on inside a computer—as well as memory and logic devices."

The secret to harnessing spin is to control its evolution and spin configuration.

"If you grab a circular refrigerator magnet and place it under a microscope that could image electron spins, you would see the magnet has several regions called domains, where within each domain all the spins point in the same direction," explained group leader Yimei Zhu. "If you were to shrink that magnet down to a size smaller than a red blood cell, the spins inside the magnet will begin to align themselves into unique spin textures."

For example, in a magnetic disc with a radius of just 500 nanometers (billionths of a meter) and a thickness of just 25 nanometers, the disc can no longer support multiple domains and the spins align in a hurricane-like rotational pattern to reduce the overall magnetic energy. The spins parallel to the disc's surface rotate around a core, much like the eye of the hurricane, either clockwise or anticlockwise. And at the core, the magnetic spins point out of the disc's surface, either up or down. So this structure, a magnetic vortex, has four possible states—up or down paired with clockwise or anticlockwise.

What's more, the core of the magnetic vortex can be moved around within a nanodisc by applying either an electric current or an external magnetic field, "so it behaves much like a particle—a quasi-particle," Pulecio said. Applying certain high-frequency electromagnetic excitations can set the vortex core moving in a circular motion about the center of the disc. These circular motions, or oscillations, are what scientists hope to put to use.

"Magnetic vortex-based oscillators can be tuned to operate at different narrowly defined frequencies, making them extremely flexible for telecommunications applications," Pulecio said. "They are also self-contained elements, about 100,000 times smaller than oscillators based on voltage instead of spin, so they could prove to be less expensive, consuming less electricity, and won't take up as much room on the device. That's especially important if you are talking about miniaturization for cell phones, wearable electronics, tablets, and so on."

For now, however, the power output of these spintronic devices is relatively small compared with oscillator technologies currently in use. So scientists are exploring ways to synchronize the oscillations of multiple magnetic vortices.

In the Nature Communications paper, Pulecio, Zhu, and their collaborators at the Swiss Light Source, Brookhaven's National Synchrotron Light Source, and Stony Brook University explored expanding the device in three dimensions by stacking one vortex on top of another, with the individual discs separated by a thin non-magnetic layer. They investigated how changing the thickness of the non-magnetic layer affected the fundamental interactions at the nanoscale, and how those, in turn, affected the coupled dynamics of the vortices. They directly imaged how the vortices responded to high-frequency stimulation using high-resolution Lorentz transmission electron microscopy imaging.

The results: A thicker separating layer resulted in somewhat unordered motion of the coupled vortices in the two discs. The thinner the separating layer, the stronger the vortices were linked, synching up in space into coherent circular motion. This could help to overcome the power limitations of current vortex-based spintronic antennas by creating arrays of synchronized tiny oscillators through coupled 3D stacks.

The scientists are currently working with other more exotic systems to understand the dynamics in both time and space that could make spintronic technologies a reality.

"Magnetic vortices were one of the first observed magnetic quasi-particles and we are currently looking to expand our investigations to observe other newly discovered spin textures and how we might harness those," Pulecio said.

This research was supported by the Core-Research Programs within Basic Energy Science, DOE Office of Science. Fabrication of the devices was supported in part by the Center for Functional Nanomaterials at Brookhaven National Laboratory.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh

631-344-8350

Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: Coherence and modality of driven interlayer coupled magnetic vortices:

Related News Press

News and information

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Imaging

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Leti Presents Optical-Equipment Curving Technology that Improves Performance, Cuts Costs: ‘Disruptive Approach’ for Imaging Applications Presented in Paper At Photonics West and Demonstrated in Leti’s Booth February 2nd, 2018

Wireless/telecommunications/RF/Antennas/Microwaves

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Round-the-clock power from smart bowties February 5th, 2018

Laboratories

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Spintronics

Diamonds show promise for spintronic devices: New experiments demonstrate the potential for diamond as a material for spintronics January 30th, 2018

Researchers from TU Delft combine spintronics and nanophotonics in 2-D material January 25th, 2018

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Discoveries

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Materials/Metamaterials

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

Announcements

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Tools

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

Photonics/Optics/Lasers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project