Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Simple Method Suggested for Hormone Determination by Using Nanoparticles

Abstract:
Iranian researchers from Khwarizmi University proposed a sensitive, accurate, repeatable and highly cost-effective method to measure tiny amounts of hormones in biological samples.

Simple Method Suggested for Hormone Determination by Using Nanoparticles

Tehran, Iran | Posted on April 26th, 2014

Steroid hormones have important effects on the health of bones, cardiovascular system, skin, and liver. Detection limit of the sorbent was calculated to be 0.05 and 0.07 ng/mL for progesterone and testosterone, respectively. Moreover, the application of this method provides data that report the amount of two hormones respectively 0.08 and 9.2 ng/mL for progesterone and 7.9 and 97.5 ng/mL for testosterone. The data is in agreement with data obtained from researchers and clinical tests.

Common methods used in laboratories for the measurement of the two hormones are complicated, time-consuming and expensive. The measurement can be carried out in short time with desirable accuracy through the proposed method. Iron oxide nanoparticles have been used in the development of the sorbent.

The research was carried out through the following steps. Iron oxide nanoparticles were firstly produced through chemical co-precipitation method. Then, they were modified with 3-(Trimethoxysilyl)-1-propanethiol and gold nanoparticles. The nanoparticles were used as sorbent for the extraction and pre-concentration of progesterone and testosterone hormones in the presence of a cationic surfactant. Finally, the amount of hormones absorbed by HPLC was measured.

The optimum conditions for the performance of the sorbent were obtained by optimizing effective parameters such as pH value, concentration of the consumed nanoparticle, sample volume and other parameters.

Results of the research have been published in details in Analytical Methods, vol. 6, issue 5, December 2014, pp. 1418-1426.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Nanomedicine

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Discoveries

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Announcements

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project