Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications

Pictured is an illustration of multilayer graphene supported on an amorphous SiO2 substrate. Sadeghi et al found that the basal-plane thermal conductivity of the supported multilayer graphene increases with increasing layer thickness and has yet to recover to the graphite value even when the thickness is increased to 34 layers.

The effect is more pronounced at lower temperatures. They attributed the finding to partially diffuse scattering of phonons at the graphene-support interface, especially diffuse transmission of phonons across the interface, as well as long phonon mean free path in graphite even along the cross-plane direction.

Credit: Image courtesy of Jo Wozniak, Texas Advanced Computing Center
Pictured is an illustration of multilayer graphene supported on an amorphous SiO2 substrate. Sadeghi et al found that the basal-plane thermal conductivity of the supported multilayer graphene increases with increasing layer thickness and has yet to recover to the graphite value even when the thickness is increased to 34 layers. The effect is more pronounced at lower temperatures. They attributed the finding to partially diffuse scattering of phonons at the graphene-support interface, especially diffuse transmission of phonons across the interface, as well as long phonon mean free path in graphite even along the cross-plane direction.

Credit: Image courtesy of Jo Wozniak, Texas Advanced Computing Center

Abstract:
Graphene, a one-atom-thick form of the carbon material graphite, has been hailed as a wonder material--strong, light, nearly transparent and an excellent conductor of electricity and heat--and it very well may be. But a number of practical challenges must be overcome before it can emerge as a replacement for silicon and other materials in microprocessors and next-generation energy devices.

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications

Arlington, VA | Posted on April 24th, 2014

One particular challenge concerns the question of how graphene sheets can be utilized in real devices.

"When you fabricate devices using graphene, you have to support the graphene on a substrate and doing so actually suppresses the high thermal conductivity of graphene," said Li Shi, a professor of mechanical engineering at The University of Texas at Austin, whose work is partially funded by the National Science Foundation (NSF).

Thermal conductivity is critical in electronics, especially as components shrink to the nanoscale. High thermal conductivity is a good thing for electronic devices fabricated from graphene. It means the device can spread the heat it generates to prevent the formation of local hot spots. However, in the case of graphene, when the needed supporting materials are also used, graphene loses some of the superhigh thermal conductivity that is predicted for its idealized state when it is freely suspended in a vacuum.

In a paper published in September 2013 in the Proceedings of the National Academy of Sciences, Shi, along with graduate research assistant Mir Mohammad Sadeghi and post-doctoral fellow Insun Jo, designed an experiment to observe the effects of thermal conductivity when the thickness of graphene supported on an amorphous glass layer was increased. They observed that thermal conductivity increased as the number of layers grew from a single one-atom layer to as thick as 34 layers. However, even at 34 layers, the thermal conductivity had not recovered to the point where it was as high as bulk graphite, which is an excellent heat conductor.

These findings are leading Shi and others to explore novel ways of supporting or connecting graphene with the macroscopic world, including three-dimensional interconnected foam structures of graphene and ultrathin graphite, or the use of hexagonal boron nitride, which has nearly the same crystal structure as graphene.

"One of our objectives is to use graphene and other layered materials to make flexible electronic devices. And those devices will be made on plastic substrates, which are flexible, but also have very low thermal conductivity," Shi explained. "When you run current through the devices, a lot of them fail. The heat cannot be dissipated effectively, so it becomes very hot and it just melts the substrate."

Melting isn't the only problem. As temperatures get higher, the flexible polymer substrate can become a molten and rubber-like material that breaks the electronic materials built on top and causes tiny conducting wires in electronic devices to easily fail.

"In general, a hot chip is not good for the devices," Shi said. "The transistors will switch slower and will require more power."

Shi has been exploring the physical properties of graphene-based materials for more than a decade. He co-authored a 2001 paper in Physical Review Letters that reported the first measurement of high thermal conductivity in individual carbon nanotubes, a cousin of graphene. He also co-authored a 2010 paper in Science that provided critical insight into the thermal conductivity and thermal transport in single layer graphene supported on a substrate.

Shi is trying to answer fundamental questions about how phonons--the vibrations of atoms in solids--transport heat. Phonons are like electrons or photons (light particles), in that they carry heat energy. However, much less is known about phonons because their effects are less apparent at the macro-scale at which we live.

"This fundamental study allowed us to understand the intrinsic physics of the scattering of lattice waves," Shi said.

Shi's experiments let his team infer how phonons scatter as a function of thickness of the graphene layers, based on observations of how the thermal conductivity varied with different numbers of layers.

To gather these insights, his team conducted theoretical calculations using the Stampede supercomputer at the Texas Advanced Computing Center (TACC), based at The University of Texas at Austin.

The simulations led them to better understand their experimental results.

"In order to really understand the physics, you need to include additional theoretical calculations. That's why we use the supercomputers at TACC," said Shi. "When you do an experiment, you see a trend, but without doing the calculations you don't really know what it means. The combination of the two is very powerful. If you just do one without doing the other, you might not develop the understanding needed."

Most of the thermal systems used today are based on legacy technologies, according to Shi. Copper and aluminum serve as heat sink materials in computers; molten salts and paraffin wax are used as the storage medium of energy in thermal storage devices; and to perform thermoelectric conversion for waste heat recovery, we use materials like bismuth telluride or lead telluride that contain elements that are either not abundant in the earth crust or not environmentally friendly.

"We're really limited by the materials," Shi said. "Can we come up with more effective materials to replace copper interconnects and copper heat-sinks, or replace silicon transistors? Can we develop thermally stable insulators for applications like fire protection? I think in 10 years, new materials will be discovered and implemented to replace these legacy technologies."

Recently, he has been exploring how multi-layered graphene can recover some of the high thermal conductivity that is lost as graphene is placed on a glass substrate, and also looking into other crystalline materials for supporting graphene.

Shi and his team are experimenting and modeling new dielectric supports, like boron nitride, which has a comparable crystal structure to graphene. The hope is that its similar crystal structure will lead to better thermal conductivity and less phonon scattering when they are used to support graphene. In a recent paper in Applied Physical Letters, Shi and Steve Cronin's team at University of Southern California reported their investigation of thermal transport across a graphene/boron-nitride interface. The results suggest the importance of improving the interface quality in order to increase the interface's conductance.

Another line of Shi's research looks at materials for thermal energy storage. Writing in the December 2013 issue of the journal Energy and Environmental Science, Shi's team showed that ultrathin graphene foams can be used to increase the power capacity of thermal storage devices by increasing the rate that heat can be charged and discharged into the phase change materials used to store the thermal energy.

"The increased thermal cycling stability, and applicability to a diverse range of phase change materials suggests that ultra-thin graphite foam composites are a promising route to achieving the high power capacity targets of a number of thermal storage applications, including building and vehicle heating and cooling, solar thermal harvesting, and thermal management of electrochemical energy storage and electronic devices," said Michael Pettes, a professor of mechanical engineering at the University of Connecticut and co-author of the paper.

"It is Shi's fundamental work on nanoscale materials including graphene that has guided the design of scalable materials which can benefit from nanostructuring and provide possibly revolutionary societal benefits."

The common thread for all this research is the development of an understanding of how the fundamental energy carriers--including electrons, photons, phonons and molecules--are transported and coupled to each other in materials, Shi said.

"Professor Shi has pioneered work on the measurements of phonon transport at the nano-scale and has undertaken measurements across a range of nano-scale systems. He was among the first to report measurements showing the important effect of a substrate on thermal conductivity reduction in graphene," said Sumant Acheriya, an NSF program officer. "NSF has also supported Professor Shi on the development of low-cost silicide thermoelectric materials with the intent of fostering the development of thermoelectric-based waste heat recovery from automobiles. Professor Shi is a leader in the field of nano-scale heat transport, and I am pleased that NSF has been able to support many of Prof. Shi's groundbreaking research."

In addition to NSF's Thermal Transport Processes Program, Shi's research has been supported by the Office of Naval Research, the Department of Energy Office of Basic Energy Science and ARPA-E. One of their projects is now part of the overall effort by the Nanomanufacturing Systems for Mobile Computing and Mobile Energy Technologies (NASCENT) center, founded in 2013 and based at The University of Texas at Austin. The NSF-funded engineering research center develops high throughput, high yield and versatile nanomanufacturing systems to take nano-science discoveries from the lab to the marketplace.

Despite a long history exploring and designing with the material, Shi doesn't claim graphene will always be superior to other materials.

"But it has exciting prospects for applications," he said. "And there's great physics involved."

####

For more information, please click here

Contacts:
Aaron Dubrow
NSF
703-292-4489

Copyright © National Science Foundation (NSF)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nanomaterials & Thermo-Fluids Laboratory:

Phonon-interface scattering in multilayer graphene on an amorphous support:

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Graphene

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Chip Technology

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Discoveries

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

From Narrow to Broad July 30th, 2014

Military

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Energy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Photonics/Optics/Lasers

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

From Narrow to Broad July 30th, 2014

Terabyte Photonic Dataset Sale July 30th, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Solar/Photovoltaic

From Narrow to Broad July 30th, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE