Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanomaterial Outsmarts Ions

The left ion in the diagram is deflected by a collision with an atom in the membrane, which is only one nanometer thick and loses considerably more energy than previously believed (red arrow); the right ion passes virtually unhindered through the membrane (green arrow).
Source: HZDR
The left ion in the diagram is deflected by a collision with an atom in the membrane, which is only one nanometer thick and loses considerably more energy than previously believed (red arrow); the right ion passes virtually unhindered through the membrane (green arrow).

Source: HZDR

Abstract:
Ions are an essential tool in chip manufacturing, but these electrically charged atoms can also be used to produce nano-sieves with homogeneously distributed pores. A particularly large number of electrons, however, must be removed from the atoms for this purpose. Such highly charged ions either lose a surprisingly large amount of energy or almost no energy at all as they pass through a membrane that measures merely one nanometer in thickness. Researchers from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Vienna University of Technology (TU Wien) report in the scientific journal Physical Review Letters that this discovery is an important step towards developing novel types of electronic components made of graphene (DOI: 10.1103/PhysRevLett.112.068103).

Nanomaterial Outsmarts Ions

Dresden, Germany | Posted on April 22nd, 2014

Although highly charged ions cause damage only on a very limited area of a material surface, they do so extremely efficiently. This makes them an ideal tool for special tasks, such as perforating ultra-thin films of carbon that measure only one nanometer in thickness (one nanometer = one millionth of a millimeter). The result is a technologically usable nano-sieve that could, for example, separate different gases.

"Bombarding material with ions can be compared with striking billiard balls," according to Richard Wilhelm, doctoral candidate at the HZDR. "A professional player knows exactly at which angle he must strike the ball in order to succeed during his turn. In doing so, the player also calculates the energy that must be transmitted by a ball to one or more of the other balls." Ions behave similarly when they collide with atoms in the material. The ions gradually slow down on their path through a large number of collisions and continuously lose energy — like a bullet that penetrates a tree trunk and then comes to rest there.

For an ultra-thin material that consists of only a few atomic layers, this analogy, however, is not applicable — as the exciting results demonstrate from the latest experiments at the Ion Beam Center of HZDR. Wilhelm and his colleagues from Dresden and Vienna observed for the first time in experiments that the highly charged ions either flew through a nanomebrane virtually unaffected, or lost an astounding amount of energy in doing so. It was previously assumed, however, that ions always lose the same amount of energy on average.

In order to see this newly discovered effect at all, the membrane cannot be thicker than one nanometer — the carbon membrane, hanging freely from a carrier, was produced at the University of Bielefeld. In addition, the ions must have a high positive charge, meaning that many electrons were removed in advance. Thirty-fold charged xenon ions were used. Two different events can occur when the xenon ions hit the ultra-thin membrane. While one ion can virtually pass unimpeded between carbon atoms of the nanomembrane, a different ion might collide with one of the atoms in the material. During such a collision, it passes through the electron cloud of the atom and sucks up the negatively charged electrons. This electron capture almost leads to neutralization of the ion, resulting in a considerable deceleration. Depending on the angle at which the ion continues to travel after the collision, the energy loss amounts up to ten percent.

"Our experiments demonstrated for the first time that the energy loss in the material depends considerably on the charge state of the ions. We suspect a general relationship, which could not be previously observed with the customary thicker materials and in lower ion charge states," explains HZDR doctoral candidate Wilhelm.

Graphene the "Miracle Material"

The researchers at the Helmholtz-Zentrum Dresden-Rossendorf and Vienna University of Technology (TU Wien) would like to work with the promising material of graphene as a next step. Graphene is carbon that is only one atomic layer thick. It possesses almost exotic properties, such as extreme durability while it is also transparent and a metal. "Many groups around the world are working with graphene at the moment, but only very few are incorporating foreign atoms into the two-dimensional material. If this could be done routinely using ion implantation, it could lead to novel electronic components with unexpected capabilities," explains Richard Wilhelm. Within the Ion Beam Center of the HZDR, several more facilities are available for generating highly charged ions for experiments with graphene. The TU Wien, a long-term research partner, is again actively on board.

####

For more information, please click here

Contacts:
Simon Schmitt


Additional information:
Institute of Ion Beam Physics and Materials Research at HZDR
Richard Wilhelm
+49 351 260 - 2834


Dr. Stefan Facsko
+49 351 260 - 2987


Media contact:
Helmholtz-Zentrum Dresden-Rossendorf
Dr. Christine Bohnet
Communication and Media
Tel. +49 351 260 - 2450

Copyright © Helmholtz-Zentrum Dresden-Rossendorf

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

R. A. Wilhelm, E. Gruber u.a.: Charge exchange and energy loss of slow highly charges ions in 1 nm thick carbon nanomembranes, in: Physical Review Letters 112 (2014), 153201:

R. Ritter, R. A. Wilhelm, M. Stöger-Pollach u.a.: Fabrication of nanopores in 1 nm thick carbon nanomembranes with slow highly charged ions, in: Applied Physics Letters 102, 063112 (2013), DOI: 10.1063/1.4792511:

Related News Press

News and information

Nano-supercapacitors for electric cars July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Graphene

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Thin films

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Even geckos can lose their grip July 9th, 2014

Discoveries

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Materials/Metamaterials

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Announcements

Nano-supercapacitors for electric cars July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE