Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Iranian Researchers Produce New Anti-Cancer Drug from Turmeric

Abstract:
Iranian researchers from Tarbiat Modarres University produced a new drug capable of detecting and removing cancer cells using turmeric.

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric

Tehran, Iran | Posted on April 19th, 2014

The compound is made of curcumin found in the extract of turmeric, and has desirable physical and chemical stability and prevents the proliferation of cancer cells.

In this drug, curcumin with high efficiency (approximately 87%) was loaded in the polymeric nanocarrier, and it created a spherical structure with the size of 140 nm. The drug has high physical and chemical stability. The drug was used successfully in laboratory conditions in the treatment of a type of aggressive tumor in the central nervous system, called glioblastoma (GBM).

The interesting point is that the fatal effect of nanocurcumin on mature stem cells derived from marrow and natural cells of skin fibroblast is observed at a concentration higher than a concentration that is effective on cancer cells. In other words, no fatal effect on natural cells is observed at concentrations that are fatal to cancer cells. It shows that curcumin prefers to enter cancer cells.

The size range of the nanocarrier used in this research is 15-100 nm. Physical and chemical stability, non-toxicity, and biodegradability are among the main characteristics of the nanocarriers. Based on the results, the nanocarrier used in this research has no toxic effect on cells. In other words, all the death in the cells is caused by curcumin, and dendrosome only results in bioavailability and transference of the drug into the cells.

"The drug has the potential to affect a number of message delivery paths in the cells, one of which is cell proliferation path. Therefore, the drug prefers to enter cancer cells rather than various types of natural cells," the researchers said.

Results of the research have been published in International Journal of Nanomedicine, vol. 9, issue 1, January 2014, pp. 403-417.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Nanomedicine

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Together, nanotechnology and genetic interference may tackle 'untreatable' brain tumors: Tel Aviv University researchers' groundbreaking strategy stops brain tumor cell proliferation with targeted nanoparticles February 24th, 2015

Discoveries

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE