Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > High-temperature plasmonics eyed for solar, computer innovation

This diagram shows the respective properties of plasmonic and refractory materials for applications in high-temperature plasmonics, which could radically improve solar cell performance and bring advanced computer data storage technology that uses heat to record information on a magnetic disk. Birck Nanotechnology Center/Purdue University
This diagram shows the respective properties of plasmonic and refractory materials for applications in high-temperature plasmonics, which could radically improve solar cell performance and bring advanced computer data storage technology that uses heat to record information on a magnetic disk.

Birck Nanotechnology Center/Purdue University

Abstract:
New "plasmonic metamaterials" that operate at high temperatures could radically improve solar cell performance and bring advanced computer data storage technology that uses heat to record information on a magnetic disk.

High-temperature plasmonics eyed for solar, computer innovation

West Lafayette, IN | Posted on April 17th, 2014

The materials could make it possible to harness clouds of electrons called surface plasmons to manipulate and control light. However, some of the plasmonic components under development rely on the use of metals such as gold and silver, which cannot withstand high temperatures. They also are not compatible with the complementary metal-oxide-semiconductor (CMOS) manufacturing process used to construct integrated circuits.

Purdue University researchers are working to replace silver and gold with titanium nitride and zirconium nitride.

"These materials remain stable at the high operational temperatures required for high efficiency and performance," said Urcan Guler, a postdoctoral research associate working with Alexandra Boltasseva, an associate professor of electrical and computer engineering, and Vladimir M. Shalaev, scientific director of nanophotonics at Purdue's Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering.

The promise of high-temperature plasmonics is described in an article appearing Friday (April 18) in the journal Science. The article, appearing in the magazine's Perspectives section, was co-authored by Guler, Boltasseva and Shalaev.

Metamaterials have engineered surfaces that contain features, patterns or elements, such as tiny antennas or alternating layers of nitrides that enable unprecedented control of light. Under development for about 15 years, the metamaterials owe their unusual potential to precision design on the scale of nanometers.

Now, researchers have discovered that a new class of plasmonic technologies might use high temperatures to achieve superior efficiency. One obstacle, however, is that the operational temperature required for high-efficiency devices is estimated to be around 1,500 degrees Celsius (about 2,700 Fahrenheit). Titanium nitride and zirconium nitride are said to be refractory, meaning they have a high melting point and chemical stability at temperatures above 2,000 Celsius (about 3,600 degrees Fahrenheit).

The materials might be used for solar thermophotovoltaics, in which an ultrathin layer of plasmonic metamaterials could dramatically improve solar cell efficiency: Whereas today's solar cells have an efficiency of about 15 percent, in theory the efficiency might be improved to as high as 85 percent with solar thermophotovoltaics. The plasmonic layer acts as a thin "intermediate spectral converter" that absorbs the entire spectrum of sunlight and then illuminates the solar cell, Guler said.

The spectral converter is an extremely thin layer of metamaterial that uses plasmonic nanoantennas to absorb and emit light. The layer might be as thin as 500 nanometers, or half of a micron, roughly one-hundredth the width of a human hair. This layer of material would be heated by sunlight to about 1,500 degrees Celsius.

Previous research in the field explored the use of refractory metals such as tungsten or tantalum, which are not good plasmonic materials. Using these metals requires a layer 20 times thicker than is possible with the plasmonic metamaterials, making it far more vulnerable to mechanical stresses caused by the constant expansion-contraction cycle of solar thermophotovoltaic devices. Another advantage is that the thinner layer heats up more readily because of its low mass.

The high-temperature plasmonic metamaterials also could enable researchers to perfect a new form of computer data storage called heat-assisted magnetic recording (HAMR) drives, which promise far greater capacity than is possible with current technology. However, one challenge is to create nanoantennas out of materials that stand up to the extreme temperatures and mechanical demands posed by the operation of computer hard drives, Shalaev said.

"The antenna is located very close to a disk spinning at a high speed and under temperatures of about 400 Celsius," he said. "Under these conditions, deformation of the nanostructure is difficult to prevent."

Titanium nitride, however, offers high strength and heat resistance. The material is used commercially to coat drill bits.

"There is no way to damage it with a spinning disk," Guler said.

Shalaev and Boltasseva have formed a startup company, Nano-Meta Technologies Inc., based at the Purdue Research Park. Nano-Meta Technologies is focusing initially on three applications: the heat-assisted magnetic recording, solar thermophotovoltaics and a new clinical therapeutic approach.

In the clinical therapeutic concept, titanium nitride nanoparticles might be injected into the bloodstream so that they accumulate in tumors. Clinicians might shine a certain wavelength of light on these nanoparticles from outside the body, causing the particles to heat up and killing the cancer cells.

Information about Nano-Meta Technologies is available online at www.nanometatech.com/.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Vladimir Shalaev
765-494-9855


Alexandra Boltasseva
765-494-0301


Urcan Guler

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Memory Technology

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Nanomedicine

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Discoveries

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Announcements

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Photonics/Optics/Lasers

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project