Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > High-temperature plasmonics eyed for solar, computer innovation

This diagram shows the respective properties of plasmonic and refractory materials for applications in high-temperature plasmonics, which could radically improve solar cell performance and bring advanced computer data storage technology that uses heat to record information on a magnetic disk. Birck Nanotechnology Center/Purdue University
This diagram shows the respective properties of plasmonic and refractory materials for applications in high-temperature plasmonics, which could radically improve solar cell performance and bring advanced computer data storage technology that uses heat to record information on a magnetic disk.

Birck Nanotechnology Center/Purdue University

Abstract:
New "plasmonic metamaterials" that operate at high temperatures could radically improve solar cell performance and bring advanced computer data storage technology that uses heat to record information on a magnetic disk.

High-temperature plasmonics eyed for solar, computer innovation

West Lafayette, IN | Posted on April 17th, 2014

The materials could make it possible to harness clouds of electrons called surface plasmons to manipulate and control light. However, some of the plasmonic components under development rely on the use of metals such as gold and silver, which cannot withstand high temperatures. They also are not compatible with the complementary metal-oxide-semiconductor (CMOS) manufacturing process used to construct integrated circuits.

Purdue University researchers are working to replace silver and gold with titanium nitride and zirconium nitride.

"These materials remain stable at the high operational temperatures required for high efficiency and performance," said Urcan Guler, a postdoctoral research associate working with Alexandra Boltasseva, an associate professor of electrical and computer engineering, and Vladimir M. Shalaev, scientific director of nanophotonics at Purdue's Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering.

The promise of high-temperature plasmonics is described in an article appearing Friday (April 18) in the journal Science. The article, appearing in the magazine's Perspectives section, was co-authored by Guler, Boltasseva and Shalaev.

Metamaterials have engineered surfaces that contain features, patterns or elements, such as tiny antennas or alternating layers of nitrides that enable unprecedented control of light. Under development for about 15 years, the metamaterials owe their unusual potential to precision design on the scale of nanometers.

Now, researchers have discovered that a new class of plasmonic technologies might use high temperatures to achieve superior efficiency. One obstacle, however, is that the operational temperature required for high-efficiency devices is estimated to be around 1,500 degrees Celsius (about 2,700 Fahrenheit). Titanium nitride and zirconium nitride are said to be refractory, meaning they have a high melting point and chemical stability at temperatures above 2,000 Celsius (about 3,600 degrees Fahrenheit).

The materials might be used for solar thermophotovoltaics, in which an ultrathin layer of plasmonic metamaterials could dramatically improve solar cell efficiency: Whereas today's solar cells have an efficiency of about 15 percent, in theory the efficiency might be improved to as high as 85 percent with solar thermophotovoltaics. The plasmonic layer acts as a thin "intermediate spectral converter" that absorbs the entire spectrum of sunlight and then illuminates the solar cell, Guler said.

The spectral converter is an extremely thin layer of metamaterial that uses plasmonic nanoantennas to absorb and emit light. The layer might be as thin as 500 nanometers, or half of a micron, roughly one-hundredth the width of a human hair. This layer of material would be heated by sunlight to about 1,500 degrees Celsius.

Previous research in the field explored the use of refractory metals such as tungsten or tantalum, which are not good plasmonic materials. Using these metals requires a layer 20 times thicker than is possible with the plasmonic metamaterials, making it far more vulnerable to mechanical stresses caused by the constant expansion-contraction cycle of solar thermophotovoltaic devices. Another advantage is that the thinner layer heats up more readily because of its low mass.

The high-temperature plasmonic metamaterials also could enable researchers to perfect a new form of computer data storage called heat-assisted magnetic recording (HAMR) drives, which promise far greater capacity than is possible with current technology. However, one challenge is to create nanoantennas out of materials that stand up to the extreme temperatures and mechanical demands posed by the operation of computer hard drives, Shalaev said.

"The antenna is located very close to a disk spinning at a high speed and under temperatures of about 400 Celsius," he said. "Under these conditions, deformation of the nanostructure is difficult to prevent."

Titanium nitride, however, offers high strength and heat resistance. The material is used commercially to coat drill bits.

"There is no way to damage it with a spinning disk," Guler said.

Shalaev and Boltasseva have formed a startup company, Nano-Meta Technologies Inc., based at the Purdue Research Park. Nano-Meta Technologies is focusing initially on three applications: the heat-assisted magnetic recording, solar thermophotovoltaics and a new clinical therapeutic approach.

In the clinical therapeutic concept, titanium nitride nanoparticles might be injected into the bloodstream so that they accumulate in tumors. Clinicians might shine a certain wavelength of light on these nanoparticles from outside the body, causing the particles to heat up and killing the cancer cells.

Information about Nano-Meta Technologies is available online at www.nanometatech.com/.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Vladimir Shalaev
765-494-9855


Alexandra Boltasseva
765-494-0301


Urcan Guler

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Introduction of the LVEM25 Low Voltage Electron Microscope April 21st, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Memory Technology

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Computers that mimic the function of the brain: A new step forward in memristor technology could bring us closer to brain-like computing April 6th, 2015

Mind the gap: Nanoscale speed bump could regulate plasmons for high-speed data flow April 1st, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Nanomedicine

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Discoveries

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Introduction of the LVEM25 Low Voltage Electron Microscope April 21st, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Better battery imaging paves way for renewable energy future April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Energy

Better battery imaging paves way for renewable energy future April 20th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Photonics/Optics/Lasers

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

Solar/Photovoltaic

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Iranian Scientists Use Ultrasound Waves to Produce Fullerene April 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project