Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > High-temperature plasmonics eyed for solar, computer innovation

This diagram shows the respective properties of plasmonic and refractory materials for applications in high-temperature plasmonics, which could radically improve solar cell performance and bring advanced computer data storage technology that uses heat to record information on a magnetic disk. Birck Nanotechnology Center/Purdue University
This diagram shows the respective properties of plasmonic and refractory materials for applications in high-temperature plasmonics, which could radically improve solar cell performance and bring advanced computer data storage technology that uses heat to record information on a magnetic disk.

Birck Nanotechnology Center/Purdue University

Abstract:
New "plasmonic metamaterials" that operate at high temperatures could radically improve solar cell performance and bring advanced computer data storage technology that uses heat to record information on a magnetic disk.

High-temperature plasmonics eyed for solar, computer innovation

West Lafayette, IN | Posted on April 17th, 2014

The materials could make it possible to harness clouds of electrons called surface plasmons to manipulate and control light. However, some of the plasmonic components under development rely on the use of metals such as gold and silver, which cannot withstand high temperatures. They also are not compatible with the complementary metal-oxide-semiconductor (CMOS) manufacturing process used to construct integrated circuits.

Purdue University researchers are working to replace silver and gold with titanium nitride and zirconium nitride.

"These materials remain stable at the high operational temperatures required for high efficiency and performance," said Urcan Guler, a postdoctoral research associate working with Alexandra Boltasseva, an associate professor of electrical and computer engineering, and Vladimir M. Shalaev, scientific director of nanophotonics at Purdue's Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering.

The promise of high-temperature plasmonics is described in an article appearing Friday (April 18) in the journal Science. The article, appearing in the magazine's Perspectives section, was co-authored by Guler, Boltasseva and Shalaev.

Metamaterials have engineered surfaces that contain features, patterns or elements, such as tiny antennas or alternating layers of nitrides that enable unprecedented control of light. Under development for about 15 years, the metamaterials owe their unusual potential to precision design on the scale of nanometers.

Now, researchers have discovered that a new class of plasmonic technologies might use high temperatures to achieve superior efficiency. One obstacle, however, is that the operational temperature required for high-efficiency devices is estimated to be around 1,500 degrees Celsius (about 2,700 Fahrenheit). Titanium nitride and zirconium nitride are said to be refractory, meaning they have a high melting point and chemical stability at temperatures above 2,000 Celsius (about 3,600 degrees Fahrenheit).

The materials might be used for solar thermophotovoltaics, in which an ultrathin layer of plasmonic metamaterials could dramatically improve solar cell efficiency: Whereas today's solar cells have an efficiency of about 15 percent, in theory the efficiency might be improved to as high as 85 percent with solar thermophotovoltaics. The plasmonic layer acts as a thin "intermediate spectral converter" that absorbs the entire spectrum of sunlight and then illuminates the solar cell, Guler said.

The spectral converter is an extremely thin layer of metamaterial that uses plasmonic nanoantennas to absorb and emit light. The layer might be as thin as 500 nanometers, or half of a micron, roughly one-hundredth the width of a human hair. This layer of material would be heated by sunlight to about 1,500 degrees Celsius.

Previous research in the field explored the use of refractory metals such as tungsten or tantalum, which are not good plasmonic materials. Using these metals requires a layer 20 times thicker than is possible with the plasmonic metamaterials, making it far more vulnerable to mechanical stresses caused by the constant expansion-contraction cycle of solar thermophotovoltaic devices. Another advantage is that the thinner layer heats up more readily because of its low mass.

The high-temperature plasmonic metamaterials also could enable researchers to perfect a new form of computer data storage called heat-assisted magnetic recording (HAMR) drives, which promise far greater capacity than is possible with current technology. However, one challenge is to create nanoantennas out of materials that stand up to the extreme temperatures and mechanical demands posed by the operation of computer hard drives, Shalaev said.

"The antenna is located very close to a disk spinning at a high speed and under temperatures of about 400 Celsius," he said. "Under these conditions, deformation of the nanostructure is difficult to prevent."

Titanium nitride, however, offers high strength and heat resistance. The material is used commercially to coat drill bits.

"There is no way to damage it with a spinning disk," Guler said.

Shalaev and Boltasseva have formed a startup company, Nano-Meta Technologies Inc., based at the Purdue Research Park. Nano-Meta Technologies is focusing initially on three applications: the heat-assisted magnetic recording, solar thermophotovoltaics and a new clinical therapeutic approach.

In the clinical therapeutic concept, titanium nitride nanoparticles might be injected into the bloodstream so that they accumulate in tumors. Clinicians might shine a certain wavelength of light on these nanoparticles from outside the body, causing the particles to heat up and killing the cancer cells.

Information about Nano-Meta Technologies is available online at www.nanometatech.com/.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Vladimir Shalaev
765-494-9855


Alexandra Boltasseva
765-494-0301


Urcan Guler

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Manufacturing advances bring material back in vogue January 20th, 2023

New nanoparticles deliver therapy brain-wide, edit Alzheimer’s gene in mice: UW researchers have found a way to move gene therapies through the blood-brain barrier, a crucial step for brain-wide CRISPR treatments of disorders like Alzheimer's and Parkinson's disease January 20th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second January 20th, 2023

Memory Technology

Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second January 20th, 2023

Scientists take control of magnetism at the microscopic level: Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity August 26th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Scientists unravel ‘Hall effect’ mystery in search for next generation memory storage devices August 19th, 2022

Nanomedicine

New nanoparticles deliver therapy brain-wide, edit Alzheimer’s gene in mice: UW researchers have found a way to move gene therapies through the blood-brain barrier, a crucial step for brain-wide CRISPR treatments of disorders like Alzheimer's and Parkinson's disease January 20th, 2023

Team undertakes study of two-dimensional transition metal chalcogenides Important biomedical application, including biosensing December 9th, 2022

SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022

Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

Discoveries

Manufacturing advances bring material back in vogue January 20th, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

Towards highly conducting molecular materials with a partially oxidized organic neutral molecule: In an unprecedented feat, researchers from Japan develop an organic, air-stable, highly conducting neutral molecular crystal with unique electronic properties January 20th, 2023

Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second January 20th, 2023

Announcements

Manufacturing advances bring material back in vogue January 20th, 2023

New nanoparticles deliver therapy brain-wide, edit Alzheimer’s gene in mice: UW researchers have found a way to move gene therapies through the blood-brain barrier, a crucial step for brain-wide CRISPR treatments of disorders like Alzheimer's and Parkinson's disease January 20th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Researchers create a new 3D extra-large pore zeolite that opens a new path to the decontamination of water and gas: A team of scientists with the participation of the CSIC develops an extra-large pore silica zeolite from a silicate chain January 20th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Manufacturing advances bring material back in vogue January 20th, 2023

New nanoparticles deliver therapy brain-wide, edit Alzheimer’s gene in mice: UW researchers have found a way to move gene therapies through the blood-brain barrier, a crucial step for brain-wide CRISPR treatments of disorders like Alzheimer's and Parkinson's disease January 20th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second January 20th, 2023

Energy

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

Electricity harvesting from evaporation, raindrops and moisture inspired by nature January 6th, 2023

New method addresses problem with perovskite solar cells: NREL researchers provide growth approach that boosts efficiency, stability December 29th, 2022

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Photonics/Optics/Lasers

Manufacturing advances bring material back in vogue January 20th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Experimental nanosheet material marks a step toward the next generation of low-power, high-performance electronics December 9th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Solar/Photovoltaic

New method addresses problem with perovskite solar cells: NREL researchers provide growth approach that boosts efficiency, stability December 29th, 2022

Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results November 18th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Scientists have proposed a new material for perovskite solar cells: It is cheaper its analogues, easier to manufacture and to modify October 28th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project