Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass

Abstract:
The article "Collapse of superconductivity in a hybrid tin-grapheme Josephson junction array'" (authors: Zheng Han, Adrien Allain, Hadi Arjmandi-Tash,Konstantin Tikhonov, Mikhail Feigelman, Benjamin Sacépé,Vincent Bouchiat, published in Nature Physics on March 30, 2014, DOI:10.1038/NPHYS2929) presents the results of the first experimental study of the graphene-based quantum phase transition of the "superconductor-to-metal" type, i.e. transformation of the system's ground state from superconducting to metallic, upon changing the electron concentration in graphene sheet.

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass

Moscow, Russia | Posted on April 16th, 2014

The system is a regular array of tin nanodisks (the radius of each disk is 200 nm) situated on a graphene substrate. Tin becomes a superconductor at temperatures lower than T0 = 3.5 degrees Kelvin. Tin nanodiscs electrically contact with each other due to electronic conductivity through graphene. At temperatures significantly below T0 the state of the nanodisk can be characterized by a single variable - "phase," defined in the period from 0 to 2π. Due to the transfer of Cooper pairs of electrons between nanodiscs the so-called Josephson junctions are formed, which seek to establish a coherent superconducting state with uniform nanodisk phases across the entire lattice.

Graphene allows to gradually change the density of conduction electrons in it by changing the voltage on the electrostatic gate, and thus the strength of Josephson junctions between tin nanodiscs. Phase correlations among nanodiscs are destroyed by thermal fluctuations at temperatures above the critical temperature Tc. At high density of conduction electrons in graphene the measured value Tc (around 0.5-0.7 K) is in good agreement with the previously developed theory, published in the article by Feigel'man, M.; Skvortsov, M. & Tikhonov, K. Theory of proximity-induced superconductivity in graphene, Solid State Communications, *149*, 1101 - 1105 (2009).

Upon lowering the electron density of grapheme the energies of Josephson junctions weaken due to increase in the resistance of graphene, and the temperature of transition into coherent state drops sharply to below the minimum temperature of the experiment (60 mK). In other words, the spatial phase coherence between different individual nanodisks is destroyed solely by quantum (independent of temperature) phase fluctuations. As a result, superconductor-to-metal quantum phase transition takes place.

First approach to the theory of such a phase transition have previously been developed in the paper Feigel'man, M.; Larkin A. & Skvortsov, M. "Quantum superconductor-metal transition in a proximity array," Physical Review Letters *86* 1869, (2001).

In the domain of lowest measurable temperatures the resistance of the studied array turns out to be nearly temperature-independent, and, at the same time, it is an exponentially sharp function of voltage on the electric back-gate; this observation is yet to be explained as no complete theory is capable of describing it at present.

In addition to the above-mentioned superconductor-to-metal transition, the authors discovered the so-called "superconducting glass" state, which is created as a result of disorder and frustration in the Josephson junctions, but nevertheless corresponds to some of the minima of the total energy of the Josephson junctions array. Here, the controlling parameter is the strength of external magnetic field. Competition of periodic dependency on the magnitude of magnetic flux through the elementary cell of the nanodisk lattice and random dependency on the same parameter (due to mesoscopic fluctuations) leads to a phase diagram of the "re-entrant" type. Namely, the magnitude of the maximum superconducting current that flows through the entire lattice depends non-monotonically upon an external magnetic field; first it decreases (all the way down to zero), and then reappears with the increase of the magnetic field in a certain range of its values.

###

####

For more information, please click here

Contacts:
Alexandra O. Borissova

7-495-408-6445

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Graphene/ Graphite

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Superconductivity

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Iron secrets behind superconductors unlocked July 7th, 2017

Discoveries

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Announcements

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project